@

FRR Developer’s Manual
Release latest

FRR

Jun 07, 2022

2

3

CONTENTS

1 Process & Workflow 1
1.1 Mailing Lists o e e 1
1.2 Development & Release Cycle e 1
1.3 Submitting Patches and Enhancements L L oL 5
1.4 Programming Languages, Tools and Libraries 8
1.5 CodeReviews e e 8
1.6 Coding Practices & Style e 9
1.7 Documentation o it e e e e e e e e e e e e e e e e e e e 21
Building FRR 25
2.1 Static Linking e e e e e e 25
22 Alpine LInux 3.7+ e e e 26
23 CentOS 6 o o 28
24 CentOS 7 . . o o 33
25 CentOS 8 . . o o e 36
2.6 Debian8 L e 40
2.7 DebianQ . ..o e e e e e e 43
2.8 Fedora24+ e 46
2.9 openSUSE e e e e e e 49
2.10 FreeBSD 10 o . e e e 52
2.11 FreeBSD 11 o e 55
2.12 FreeBSD O . . . L e e e e 58
2.13 NetBSD 6. o e e 61
2.14 NetBSD 7. . . o o 64
2.15 OpenBSD 6. o o e e e e e e e e e e e 66
216 OpenWIt o o e e e e e e e e e e e e 70
2.17 Ubuntu 14.04 LTS o e 72
2.18 Ubuntu 16.04 LTS o e 75
2.19 Ubuntu 18.04 LTS 78
220 Ubuntu 20.04 LTS e e e 82
221 ArchLinux o . e e e 86
222 Docker e e 89
223 Cross-Compiling L 92
Releases & Packaging 99
3.1 FRRRelease Procedure e 99
3.2 Packaging Debian e 102
3.3 Multi-Distribution builds 103
34 PackagingRed Hat e e e e e 104

10

11

12

Process Architecture

4.1 OVEIVIBW . . o v vt e e e e e e e e e e e e
4.2 Terminology e e e e e e e e e e e e e e
43 Event Architecture o L e e e e e e e e
4.4 Kernel Thread Architecture L e
4.5 Notes on Design and Documentation oL
Library Facilities (libfrr)

5.1 Memtypes o e e e e e e e e e e e
52 RCU . .
5.3 Type-safe CONtaiNerst v i i e e e e e e e e e e e e e e e e e
54 Logging. . . . oL e e e e e e e
5.5 Introspection (XrefS) L e e e e e e e e e
5.6 Locking e e e
5.7 HOOKS . . . o o e e e e e
5.8 Command Line Interface e
59 Modules . . .o e e
510 Scripting L e e e e e e e e
Fuzzing

6.1 OVEIVIEW o o e e e
6.2 Code e e e e
6.3 Design . ..o e e e e e
6.4 Targets e e e e e e
6.5 Fuzzer Notes i e e
Tracing

7.1 Supported tracers v o v v i e
T2 USAZE « o v v o e e e e e e e e e e e e e e e e
T3 CONCEPLS . v v v v o e
74 Adding Tracepoints e e e e
7.5 Limitations oL e e e e e e e e e e e e e e
Testing

8.1 TOPOEeStS o e e e e e e
8.2 Topotests with JSON o L e e
BGPD

9.1 NextHop Tracking e
9.2 BGP-4[+] UPDATE Attribute Preprocessor Constants
FPM

10.1 fpm . . . e e e e e e e
10.2 dplane_fpm_nl e
103 Version o o e e e e e
10.4 Message TYPE . . o o o v i e e e e e e e e e e e e e e
10.5 Message Length L e e e e
10.6 Data. o o e e e e e e e e e
Northbound gRPC

11.1 Programming Language Bindings
OSPFD

12.1 OSPF API Documentation ot i ittt e e e e e
12.2 OSPF SegmentRouting e

107
107
107
107
110
113

115
115
117
121
132
144
147
149
151
168
170

181
181
181
182
182
183

185
185
185
189
190
191

193
193
220

229
229
235

237
237
238
238
238
238
238

239
239

13 Zebra
13.1

13.3

Overview of the Zebra Protocol e
13.2 Zebra Protocol Definition e e e

Dataplane batching

14 VTYSH

14.1
14.2

Architecture . . .
Protocol

15 PATHD

15.1

16 PCEP
16.1
16.2
16.3
16.4

Internals

lib
Overview

PCEPlib compliance e e
PCEPIib Architecture o e e e e e

PCEPIib PCC API

17 Link State API Documentation

17.1
17.2
17.3
17.4
17.5

Index

Introduction . . .
Architecture . . .
Link State API . .
Link State TED . .
Link State Messages

263
263
264
267

269
269
271

273
273

279
279
279
279
287

297
297
297
298
299
302

307

CHAPTER
ONE

PROCESS & WORKFLOW

FRR is a large project developed by many different groups. This section documents standards for code style & quality,
commit messages, pull requests and best practices that all contributors are asked to follow.

This chapter is “descriptive/post-factual” in that it documents pratices that are in use; it is not “definitive/pre-factual”
in prescribing practices. This means that when a procedure changes, it is agreed upon, then put into practice, and then
documented here. If this document doesn’t match reality, it’s the document that needs to be updated, not reality.

1.1 Mailing Lists

The FRR development group maintains multiple mailing lists for use by the community. Italicized lists are private.

Topic List

Development dev @lists.frrouting.org
Users & Operators frog @lists.frrouting.org
Announcements announce @lists.frrouting.org
Security security @lists.frrouting.org
Technical Steering Committee | tsc@lists.frrouting.org

The Development list is used to discuss and document general issues related to project development and governance.
The public Slack instance and weekly technical meetings provide a higher bandwidth channel for discussions. The
results of such discussions must be reflected in updates, as appropriate, to code (i.e., merges), GitHub issues, and
for governance or process changes, updates to the Development list and either this file or information posted at https:
/Mfrrouting.org/.

1.2 Development & Release Cycle

1.2.1 Development

The master Git for FRR resides on GitHub.

There is one main branch for development, master. For each major release (2.0, 3.0 etc) a new release branch is created
based on the master. Significant bugfixes should be backported to upcoming and existing release branches no more
than 1 year old. As a general rule new features are not backported to release branches.

Subsequent point releases based on a major branch are handled with git tags.

mailto:dev@lists.frrouting.org
mailto:frog@lists.frrouting.org
mailto:announce@lists.frrouting.org
mailto:security@lists.frrouting.org
mailto:tsc@lists.frrouting.org
https://frrouting.slack.com
https://github.com/frrouting/frr/issues
https://frrouting.org/
https://frrouting.org/
https://github.com/frrouting/frr

FRR Developer’s Manual, Release latest

Master
(Stable)

1.1
Release
Branch

Github Pull Rﬁuest
Github Pull Rﬁuest
' Github Pull Rﬁuest
' Patch Email {Patchwork)
' Github Pull F\ﬁuesl
' Github Pull Hﬁuesl

' Github Pull Hﬁuest

Patch Email (Patchwork)

Version 1.1.2
Version 1.1.1
Version 1.1.0
Version 1.1.b1
Version 1.1.a2
Version 1.1.a1
Patch Email (Patchwork)
Github Pull Hﬂues[

3 Github Pull Hﬂuesl

Patch Email (Patchwork)

1.0
Release
Branch

Version 1.0.0

Version 1.0.b1

Github Pull Request
Version 1.0.a2

Github Pull Request

Version 1.0.a1

Fig. 1: Rough outline of FRR development workflow

1.2.2 Releases

FRR employs a <MAJOR>.<MINOR>.<BUGFIX> versioning scheme.

MAJOR Significant new features or multiple minor features. This should mostly cover any kind of disruptive change that
is visible or “risky” to operators. New features or protocols do not necessarily trigger this. (This was changed
for FRR 7.x after feedback from users that the pace of major version number increments was too high.)

MINOR General incremental development releases, excluding “major” changes mentioned above. Not necessarily fully
backwards compatible, as smaller (but still visible) changes or deprecated feature removals may still happen.
However, there shouldn’t be any huge “surprises” between minor releases.

BUGFIX Fixes for actual bugs and/or security issues. Fully compatible.

Releases are scheduled in a 4-month cycle on the first Tuesday each March/July/November. Walking backwards from
this date:

* 6 weeks earlier, master is frozen for new features, and feature PRs are considered lowest priority (regardless of
when they were opened.)

* 4 weeks earlier, the stable branch separates from master (named dev/MAJOR.MINOR at this point) and tagged as
“base_X.Y. Master is unfrozen and new features may again proceed.

Part of unfreezing master is editing the AC_INIT statement in configure.ac to reflect the new development
version that master now refers to. This is accompanied by a frr-X.Y-dev tag on master, which should always
be on the first commit on master after the stable branch was forked (even if that is not the edit to AC_INIT; it’s
more important to have it on the very first commit on master after the fork.)

(The configure.ac edit and tag push are considered git housekeeping and are pushed directly to master, not
through a PR.)

Below is the snippet of the commands to use in this step.

2 Chapter 1. Process & Workflow

FRR Developer’s Manual, Release latest

% git remote --verbose
upstream git@github.com:frrouting/frr (fetch)
upstream git@github.com:frrouting/frr (push)

git checkout master

git pull upstream master

git checkout -b dev/8.2

git tag base_8.2

git push upstream base_8.2

git push upstream dev/8.2

git checkout master

sed -i 's/8.2-dev/8.3-dev/' configure.ac
git add configure.ac

git commit -s -m "build: FRR 8.3 development version"
git tag -a frr-8.3-dev -m "frr-8.3-dev"
git push upstream master

git push upstream frr-8.3-dev

3R 3R R R R R R R R R R R R

In this step, we also have to update package versions to reflect the development version. Versions need to be
updated using a standard way of development (Pull Requests) based on master branch.

Only change the version number with no other changes. This will produce packages with the a version number
that is higher than any previous version. Once the release is done, whatever updates we make to changelog files
on the release branch need to be cherry-picked to the master branch.

» 2 weeks earlier, a frr-X.Y-rc release candidate is tagged.

% git remote --verbose
upstream git@github.com:frrouting/frr (fetch)
upstream git@github.com:frrouting/frr (push)

% git checkout dev/8.2
% git tag frr-8.2-rc
% git push upstream frr-8.2-rc

¢ on release date, the branch is renamed to stable/MAJOR.MINOR.

The 2 week window between each of these events should be used to run any and all testing possible for the release in
progress. However, the current intention is to stick to the schedule even if known issues remain. This would hopefully
occur only after all avenues of fixing issues are exhausted, but to achieve this, an as exhaustive as possible list of issues
needs to be available as early as possible, i.e. the first 2-week window.

For reference, the expected release schedule according to the above is:

Release | 2022-07-05 | 2022-11-01 | 2023-03-07 | 2023-07-04 | 2023-10-31
RC 2022-06-21 | 2022-10-18 | 2023-02-21 | 2023-06-20 | 2023-10-17
dev/X.Y | 2022-06-07 | 2022-10-04 | 2023-02-07 | 2023-06-06 | 2023-10-03
freeze 2022-05-24 | 2022-09-20 | 2023-01-24 | 2023-05-23 | 2023-09-19

Each release is managed by one or more volunteer release managers from the FRR community. These release managers
are expected to handle the branch for a period of one year. To spread and distribute this workload, this should be rotated
for subsequent releases. The release managers are currently assumed/expected to run a release management meeting
during the weeks listed above. Barring other constraints, this would be scheduled before the regular weekly FRR
community call such that important items can be carried over into that call.

1.2. Development & Release Cycle 3

FRR Developer’s Manual, Release latest

Bugfixes are applied to the two most recent releases. It is expected that each bugfix backported should include some
reasoning for its inclusion as well as receiving approval by the release managers for that release before accepted into the
release branch. This does not necessarily preclude backporting of bug fixes to older than the two most recent releases.

Security fixes are backported to all releases less than or equal to at least one year old. Security fixes may also be
backported to older releases depending on severity.

For detailed instructions on how to produce an FRR release, refer to FRR Release Procedure.

1.2.3 Long term support branches (LTS)

This kind of branch is not yet officially supported, and need experimentation before being effective.

Previous definition of releases prevents long term support of previous releases. For instance, bug and security fixes are
not applied if the stable branch is too old.

Because the FRR users have a need to backport bug and security fixes after the stable branch becomes too old, there is
a need to provide support on a long term basis on that stable branch. If that support is applied on that stable branch,
then that branch is a long term support branch.

Having a LTS branch requires extra-work and requires one person to be in charge of that maintenance branch for a
certain amount of time. The amount of time will be by default set to 4 months, and can be increased. 4 months stands
for the time between two releases, this time can be applied to the decision to continue with a LTS release or not. In
all cases, that time period will be well-defined and published. Also, a self nomination from a person that proposes to
handle the LTS branch is required. The work can be shared by multiple people. In all cases, there must be at least one
person that is in charge of the maintenance branch. The person on people responsible for a maintenance branch must
be a FRR maintainer. Note that they may choose to abandon support for the maintenance branch at any time. If no one
takes over the responsibility of the LTS branch, then the support will be discontinued.

The LTS branch duties are the following ones:

 organise meetings on a (bi-)weekly or monthly basis, the handling of issues and pull requested relative to that
branch. When time permits, this may be done during the regularly scheduled FRR meeting.

* ensure the stability of the branch, by using and eventually adapting the checking the CI tools of FRR (indeed,
maintaining may lead to create maintenance branches for topotests or for CI).

It will not be possible to backport feature requests to LTS branches. Actually, it is a false good idea to use LTS for
that need. Introducing feature requests may break the paradigm where all more recent releases should also include
the feature request. This would require the LTS maintainer to ensure that all more recent releases have support for
this feature request. Moreover, introducing features requests may result in breaking the stability of the branch. LTS
branches are first done to bring long term support for stability.

1.2.4 Development Branches

Occassionally the community will desire the ability to work together on a feature that is considered useful to FRR. In
this case the parties may ask the Maintainers for the creation of a development branch in the main FRR repository.
Requirements for this to happen are:

* A one paragraph description of the feature being implemented to allow for the facilitation of discussion about
the feature. This might include pointers to relevant RFC’s or presentations that explain what is planned. This is
intended to set a somewhat low bar for organization.

* A branch maintainer must be named. This person is responsible for keeping the branch up to date, and general
communication about the project with the other FRR Maintainers. Additionally this person must already be a
FRR Maintainer.

4 Chapter 1. Process & Workflow

FRR Developer’s Manual, Release latest

e Commits to this branch must follow the normal PR and commit process as outlined in other areas of this docu-
ment. The goal of this is to prevent the current state where large features are submitted and are so large they are
difficult to review.

After a development branch has completed the work together, a final review can be made and the branch merged into
master. If a development branch is becomes un-maintained or not being actively worked on after three months then the
Maintainers can decide to remove the branch.

1.2.5 Debian Branches

The Debian project contains “official” packages for FRR. While FRR Maintainers may participate in creating these, it
is entirely the Debian project’s decision what to ship and how to work on this.

As a courtesy and for FRR’s benefit, this packaging work is currently visible in git branches named debian/* on the
main FRR git repository. These branches are for the exclusive use by people involved in Debian packaging work for
FRR. Direct commit access may be handed out and FRR git rules (review, testing, etc.) do not apply. Do not push to
these branches without talking to the people noted under Maintainer: and Uploaders: in debian/control on the
target branch — even if you are a FRR Maintainer.

1.2.6 Changelog

The changelog will be the base for the release notes. A changelog entry for your changes is usually not required and
will be added based on your commit messages by the maintainers. However, you are free to include an update to the
changelog with some better description.

1.3 Submitting Patches and Enhancements

FRR accepts patches using GitHub pull requests.

The base branch for new contributions and non-critical bug fixes should be master. Please ensure your pull request is
based on this branch when you submit it.

Code submitted by pull request will be automatically tested by one or more CI systems. Once the automated tests
succeed, other developers will review your code for quality and correctness. After any concerns are resolved, your
code will be merged into the branch it was submitted against.

The title of the pull request should provide a high level technical summary of the included patches. The description
should provide additional details that will help the reviewer to understand the context of the included patches.

1.3.1 License for Contributions

FRR is under a “GPLv2 or later” license. Any code submitted must be released under the same license (preferred) or
any license which allows redistribution under this GPLv2 license (eg MIT License). It is forbidden to push any code
that prevents from using GPLv3 license. This becomes a community rule, as FRR produces binaries that links with
Apache 2.0 libraries. Apache 2.0 and GPLv2 license are incompatible, if put together. Please see http://www.apache.
org/licenses/ GPL-compatibility.html for more information. This rule guarantees the user to distribute FRR binary code
without any licensing issues.

1.3. Submitting Patches and Enhancements 5

http://www.apache.org/licenses/GPL-compatibility.html
http://www.apache.org/licenses/GPL-compatibility.html

FRR Developer’s Manual, Release latest

1.3.2 Pre-submission Checklist

* Format code (see Code Formatting)
 Verify and acknowledge license (see License for Contributions)
* Ensure you have properly signed off (see Signing Off)
* Test building with various configurations:

— buildtest.sh
* Verify building source distribution:

— make dist (and try rebuilding from the resulting tar file)
* Run unit tests:

— make test

¢ In the case of a major new feature or other significant change, document plans for continued maintenance of the
feature. In addition it is a requirement that automated testing must be written that exercises the new feature within
our existing CI infrastructure. Also the addition of automated testing to cover any pull request is encouraged.

¢ All new code must use the current latest version of acceptable code.

If a daemon is converted to YANG, then new code must use YANG.

— DEFPY’s must be used for new cli

Typesafe lists must be used

printf formatting changes must be used

1.3.3 Signing Off

Code submitted to FRR must be signed off. We have the same requirements for using the signed-off-by process as the
Linux kernel. In short, you must include a Signed-off-by tag in every patch.

An easy way to do this is to use git commit -s where -s will automatically append a signed-off line to the end of
your commit message. Also, if you commit and forgot to add the line you can use git commit --amend -s to add
the signed-off line to the last commit.

Signed-off-by is a developer’s certification that they have the right to submit the patch for inclusion into the project.
It is an agreement to the Developer’s Certificate of Origin. Code without a proper Signed-off-by line cannot and
will not be merged.

If you are unfamiliar with this process, you should read the official policy at kernel.org. You might also find this article
about participating in the Linux community on the Linux Foundation website to be a helpful resource.

In short, when you sign off on a commit, you assert your agreement to all of the following:

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license

indicated in the file; or

(b) The contribution is based upon previous work that, to the best

(continues on next page)

6 Chapter 1. Process & Workflow

https://www.kernel.org/doc/html/latest/process/submitting-patches.html
http://www.linuxfoundation.org/content/how-participate-linux-community-0

FRR Developer’s Manual, Release latest

(continued from previous page)

of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part by
me, under the same open source license (unless I am permitted to
submit under a different license), as indicated in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

1.3.4 After Submitting Your Changes

* Watch for Continuous Integration (CI) test results

— You should automatically receive an email with the test results within less than 2 hrs of the submission. If
you don’t get the email, then check status on the GitHub pull request.

— Please notify the development mailing list if you think something doesn’t work.
* If the tests failed:

— In general, expect the community to ignore the submission until the tests pass.

— Itis up to you to fix and resubmit.
This includes fixing existing unit (“make test”) tests if your changes broke or changed them.
% It also includes fixing distribution packages for the failing platforms (ie if new libraries are required).
% Feel free to ask for help on the development list.

— Go back to the submission process and repeat until the tests pass.

o If the tests pass:

Wait for reviewers. Someone will review your code or be assigned to review your code.

— Respond to any comments or concerns the reviewer has. Use e-mail or add a comment via github to respond
or to let the reviewer know how their comment or concern is addressed.

— An author must never delete or manually dismiss someone else’s comments or review. (A review may be
overridden by agreement in the weekly technical meeting.)

— When you have addressed someone’s review comments, please click the “re-request review” button (in the
top-right corner of the PR page, next to the reviewer’s name, an icon that looks like “reload”)

— The responsibility for keeping a PR moving rests with the author at least as long as there are either negative
CI results or negative review comments. If you forget to mark a review comment as addressed (by clicking
re-request review), the reviewer may very well not notice and won’t come back to your PR.

— Automatically generated comments, e.g., those generated by CI systems, may be deleted by authors and
others when such comments are not the most recent results from that automated comment source.

— After all comments and concerns are addressed, expect your patch to be merged.

1.3. Submitting Patches and Enhancements 7

FRR Developer’s Manual, Release latest

* Watch out for questions on the mailing list. At this time there will be a manual code review and further (longer)
tests by various community members.

* Your submission is done once it is merged to the master branch.

1.4 Programming Languages, Tools and Libraries

The core of FRR is written in C (gcc or clang supported) and makes use of GNU compiler extensions. A few non-
essential scripts are implemented in Perl and Python. FRR requires the following tools to build distribution packages:
automake, autoconf, texinfo, libtool and gawk and various libraries (i.e. libpam and libjson-c).

If your contribution requires a new library or other tool, then please highlight this in your description of the change.
Also make sure it’s supported by all FRR platform OSes or provide a way to build without the library (potentially
without the new feature) on the other platforms.

Documentation should be written in reStructuredText. Sphinx extensions may be utilized but pure ReST is preferred
where possible. See Documentation.

1.4.1 Use of C++

While C++ is not accepted for core components of FRR, extensions, modules or other distinct components may want
to use C++ and include FRR header files. There is no requirement on contributors to work to retain C++ compatibility,
but fixes for C++ compatibility are welcome.

This implies that the burden of work to keep C++ compatibility is placed with the people who need it, and they may
provide it at their leisure to the extent it is useful to them. So, if only a subset of header files, or even parts of a header
file are made available to C++, this is perfectly fine.

1.5 Code Reviews

Code quality is paramount for any large program. Consequently we require reviews of all submitted patches by at least
one person other than the submitter before the patch is merged.

Because of the nature of the software, FRR’s maintainer list (i.e. those with commit permissions) tends to contain
employees / members of various organizations. In order to prevent conflicts of interest, we use an honor system in
which submissions from an individual representing one company should be merged by someone unaffiliated with that
company.

1.5.1 Guidelines for code review

* As arule of thumb, the depth of the review should be proportional to the scope and / or impact of the patch.
* Anyone may review a patch.

* When using GitHub reviews, marking “Approve” on a code review indicates willingness to merge the PR.

* For individuals with merge rights, marking “Changes requested” is equivalent to a NAK.

» For a PR you marked with “Changes requested”, please respond to updates in a timely manner to avoid impeding
the flow of development.

* Rejected or obsolete PRs are generally closed by the submitter based on requests and/or agreement captured
in a PR comment. The comment may originate with a reviewer or document agreement reached on Slack, the
Development mailing list, or the weekly technical meeting.

8 Chapter 1. Process & Workflow

FRR Developer’s Manual, Release latest

* Reviewers may ask for new automated testing if they feel that the code change is large enough/significant enough
to warrant such a requirement.

For project members with merge permissions, the following patterns have emerged:
* a PR with any reviews requesting changes may not be merged.
* a PR with any negative CI result may not be merged.

* an open “yellow” review mark (“review requested, but not done”) should be given some time (a few days up to
weeks, depending on the size of the PR), but is not a merge blocker.

* a “textbubble” review mark (“review comments, but not positive/negative”) should be read through but is not a
merge blocker.

* non-trivial PRs are generally given some time (again depending on the size) for people to mark an interest in
reviewing. Trivial PRs may be merged immediately when CI is green.

1.6 Coding Practices & Style

1.6.1 Commit messages

Commit messages should be formatted in the same way as Linux kernel commit messages. The format is roughly:

dir: short summary

extended summary

dir should be the top level source directory under which the change was made. For example, a change in bgpd/rfapi
would be formatted as:

bgpd: short summary

The first line should be no longer than 50 characters. Subsequent lines should be wrapped to 72 characters.

The purpose of commit messages is to briefly summarize what the commit is changing. Therefore, the extended
summary portion should be in the form of an English paragraph. Brief examples of program output are acceptable
but if present should be short (on the order of 10 lines) and clearly demonstrate what has changed. The goal should be
that someone with only passing familiarity with the code in question can understand what is being changed.

Commit messages consisting entirely of program output are unacceptable. These do not describe the behavior changed.
For example, putting VTYSH output or the result of test runs as the sole content of commit messages is unacceptable.

You must also sign off on your commit.
See also:

Signing Off

1.6. Coding Practices & Style 9

FRR Developer’s Manual, Release latest

1.6.2 Source File Header

New files must have a copyright header (see License for Contributions above) added to the file. The header should be:

/-.’r
* Title/Function of file
* Copyright (C) YEAR Author’s Name

* This program is free software; you can redistribute it and/or modify it

* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.

* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

* more details.

* You should have received a copy of the GNU General Public License along
* with this program; see the file COPYING; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

-.':/

#include <zebra.h>

Please copy-paste this header verbatim. In particular:
* Do not replace “This program” with “FRR”
* Do not change the address of the FSF

e keep #include <zebra.h>. The absolute first header included in any C file must be either zebra.h or
config.h (with HAVE_CONFIG_H guard)

1.6.3 Adding Copyright Claims to Existing Files

When adding copyright claims for modifications to an existing file, please add a Portions: section as shown below.
If this section already exists, add your new claim at the end of the list.

/%
* Title/Function of file
* Copyright (C) YEAR Author’s Name
* Portions:
Copyright (C) 2010 Entity A
Copyright (C) 2016 Your name [optional brief change description]

10 Chapter 1. Process & Workflow

FRR Developer’s Manual, Release latest

1.6.4 Defensive coding requirements

In general, code submitted into FRR will be rejected if it uses unsafe programming practices. While there is no enforced
overall ruleset, the following requirements have achieved consensus:

e strcpy, strcat and sprintf are unacceptable without exception. Use strlcpy, strlcat and snprintf
instead. (Rationale: even if you know the operation cannot overflow the buffer, a future code change may inad-
vertedly introduce an overflow.)

* buffer size arguments, particularly to strlcpy and snprintf, must use sizeof() whereever possible. Partic-
ularly, do not use a size constant in these cases. (Rationale: changing a buffer to another size constant may leave
the write operations on a now-incorrect size limit.)

* For stack allocated structs and arrays that should be zero initialized, prefer initializer expressions over memset ()
wherever possible. This helps prevent memset () calls being missed in branches, and eliminates the error class
of an incorrect size argument to memset().

For example, instead of:

struct foo mystruct;

memset (&mystruct, 0x00, sizeof(struct foo));

Prefer:

struct foo mystruct = {};

* Do not zero initialize stack allocated values that must be initialized with a nonzero value in order to be used.
This way the compiler and memory checking tools can catch uninitialized value use that would otherwise be
suppressed by the (incorrect) zero initialization.

Other than these specific rules, coding practices from the Linux kernel as well as CERT or MISRA C guidelines may
provide useful input on safe C code. However, these rules are not applied as-is; some of them expressly collide with
established practice.

Container implementations
In particular to gain defensive coding benefits from better compiler type checks, there is a set of replacement container
data structures to be found in 1ib/typesafe.h. They’re documented under Type-safe containers.

Unfortunately, the FRR codebase is quite large, and migrating existing code to use these new structures is a tedious and
far-reaching process (even if it can be automated with coccinelle, the patches would touch whole swaths of code and
create tons of merge conflicts for ongoing work.) Therefore, little existing code has been migrated.

However, both new code and refactors of existing code should use the new containers. If there are any reasons this
can’t be done, please work to remove these reasons (e.g. by adding necessary features to the new containers) rather
than falling back to the old code.

In order of likelyhood of removal, these are the old containers:
e nhrpd/list.* hlist_* DECLARE_LIST
e nhrpd/list.*, list_* DECLARE_DLIST
e 1lib/skiplist.*, skiplist_* DECLARE_SKIPLIST
e lib/*_queue.h (BSD), SLIST_* DECLARE_LIST
« 1ib/*_queue.h (BSD), LIST_* DECLARE_DLIST
« 1ib/*_queue.h (BSD), STAILQ_* DECLARE_LIST

1.6. Coding Practices & Style 11

FRR Developer’s Manual, Release latest

e 1ib/*_queue.h (BSD), TAILQ_* DECLARE_DLIST
« lib/hash.*, hash_* DECLARE_HASH

lib/linklist.*, 1list_* DECLARE_DLIST
* open-coded linked lists DECLARE_LIST/DECLARE_DLIST

1.6.5 Code Formatting
C Code

For C code, FRR uses Linux kernel style except where noted below. Code which does not comply with these style
guidelines will not be accepted.

The project provides multiple tools to allow you to correctly style your code as painlessly as possible, primarily built
around clang-format.

clang-format In the project root there is a .clang-format configuration file which can be used with the
clang-format source formatter tool from the LLVM project. Most of the time, this is the easiest and smartest
tool to use. It can be run in a variety of ways. If you point it at a C source file or directory of source files, it will
format all of them. In the LLVM source tree there are scripts that allow you to integrate it with git, vim and
emacs, and there are third-party plugins for other editors. The git integration is particularly useful; suppose
you have some changes in your git index. Then, with the integration installed, you can do the following:

git clang-format

This will format only the changes present in your index. If you have just made a few commits and would like to
correctly style only the changes made in those commits, you can use the following syntax:

git clang-format HEAD~X

Where X is one more than the number of commits back from the tip of your branch you would like clang-format
to look at (similar to specifying the target for a rebase).

The vim plugin is particularly useful. It allows you to select lines in visual line mode and press a key binding to
invoke clang-format on only those lines.

When using clang-format, it is recommended to use the latest version. Each consecutive version generally has
better handling of various edge cases. You may notice on occasion that two consecutive runs of clang-format
over the same code may result in changes being made on the second run. This is an unfortunate artifact of the
tool. Please check with the kernel style guide if in doubt.

One stylistic problem with the FRR codebase is the use of DEFUN macros for defining CLI commands.
clang-format will happily format these macro invocations, but the result is often unsightly and difficult to
read. Consequently, FRR takes a more relaxed position with how these are formatted. In general you should lean
towards using the style exemplified in the section on Command Line Interface. Because clang-format man-
gles this style, there is a Python script named tools/indent.py that wraps clang-format and handles DEFUN
macros as well as some other edge cases specific to FRR. If you are submitting a new file, it is recommended to
run that script over the new file, preferably after ensuring that the latest stable release of clang-format is in
your PATH.

Documentation on clang-format and its various integrations is maintained on the LLVM website.
https://clang.llvm.org/docs/ClangFormat.html

checkpatch.sh In the Linux kernel source tree there is a Perl script used to check incoming patches for style errors.
FRR uses an adapted version of this script for the same purpose. It can be found at tools/checkpatch.sh.
This script takes a git-formatted diff or patch file, applies it to a clean FRR tree, and inspects the result to catch

12 Chapter 1. Process & Workflow

https://clang.llvm.org/docs/ClangFormat.html

FRR Developer’s Manual, Release latest

potential style errors. Running this script on your patches before submission is highly recommended. The CI
system runs this script as well and will comment on the PR with the results if style errors are found.

It is run like this:

./checkpatch.sh <patch> <tree>

Reports are generated on stderr and the exit code indicates whether issues were found (2, 1) or not (0).

Where <patch> is the path to the diff or patch file and <tree> is the path to your FRR source tree. The tree
should be on the branch that you intend to submit the patch against. The script will make a best-effort attempt to
save the state of your working tree and index before applying the patch, and to restore it when it is done, but it is
still recommended that you have a clean working tree as the script does perform a hard reset on your tree during
its run.

The script reports two classes of issues, namely WARNINGs and ERRORs. Please pay attention to both of them.
The script will generally report WARNINGs where it cannot be 100% sure that a particular issue is real. In most
cases WARNINGS indicate an issue that needs to be fixed. Sometimes the script will report false positives; these
will be handled in code review on a case-by-case basis. Since the script only looks at changed lines, occasionally
changing one part of a line can cause the script to report a style issue already present on that line that is unrelated
to the change. When convenient it is preferred that these be cleaned up inline, but this is not required.

In general, a developer should heed the information reported by checkpatch. However, some flexibility is needed
for cases where human judgement yields better clarity than the script. Accordingly, it may be appropriate to
ignore some checkpatch.sh warnings per discussion among the submitter(s) and reviewer(s) of a change. Misre-
porting of errors by the script is possible. When this occurs, the exception should be handled either by patching
checkpatch to correct the false error report, or by documenting the exception in this document under Exceptions.
If the incorrect report is likely to appear again, a checkpatch update is preferred.

If the script finds one or more WARNINGS it will exit with 1. If it finds one or more ERRORs it will exit with 2.

Please remember that while FRR provides these tools for your convenience, responsibility for properly formatting your
code ultimately lies on the shoulders of the submitter. As such, it is recommended to double-check the results of these
tools to avoid delays in merging your submission.

In some cases, these tools modify or flag the format in ways that go beyond or even conflict' with the canonical doc-
umented Linux kernel style. In these cases, the Linux kernel style takes priority; non-canonical issues flagged by the
tools are not compulsory but rather are opportunities for discussion among the submitter(s) and reviewer(s) of a change.

Whitespace changes in untouched parts of the code are not acceptable in patches that change actual code. To
change/fix formatting issues, please create a separate patch that only does formatting changes and nothing else.

Kernel and BSD styles are documented externally:
* https://www.kernel.org/doc/html/latest/process/coding-style.html
* http://man.openbsd.org/style

For GNU coding style, use indent with the following invocation:

indent -nut -nfcl file_for_submission.c

Historically, FRR used fixed-width integral types that do not exist in any standard but were defined by most platforms
at some point. Officially these types are not guaranteed to exist. Therefore, please use the fixed-width integral types
introduced in the C99 standard when contributing new code to FRR. If you need to convert a large amount of code to use
the correct types, there is a shell script in tools/convert-fixedwidth. sh that will do the necessary replacements.

! For example, lines over 80 characters are allowed for text strings to make it possible to search the code for them: please see Linux kernel style
(breaking long lines and strings) and Issue #1794.

1.6. Coding Practices & Style 13

https://www.kernel.org/doc/html/latest/process/coding-style.html
http://man.openbsd.org/style
https://www.kernel.org/doc/html/v4.10/process/coding-style.html#breaking-long-lines-and-strings
https://www.kernel.org/doc/html/v4.10/process/coding-style.html#breaking-long-lines-and-strings
https://github.com/FRRouting/frr/issues/1794

FRR Developer’s Manual, Release latest

Incorrect | Correct

u_int8 t uint8 t

u_intl6_t | uintl6_t

u_int32 t | uint32_t

u_int64_t | uint64_t

u_char uint8_t or unsigned char
u_short unsigned short

u_int unsigned int

u_long unsigned long

FRR also uses unnamed struct fields, enabled with -fms-extensions (cf. https://gcc.gnu.org/onlinedocs/gcc/
Unnamed-Fields.html). The following two patterns can/should be used where contextually appropriate:

struct outer {

};

struct inner;

struct outer {

1

union {
struct inner;
struct inner inner_name;

};

Exceptions

FRR project code comes from a variety of sources, so there are some stylistic exceptions in place. They are organized
here by branch.

For master:

BSD coding style applies to:

1dpd/

babeld uses, approximately, the following style:

K&R style braces
Indents are 4 spaces

Function return types are on their own line

For stable/3.0 and stable/2.0:

GNU coding style apply to the following parts:

lib/
zebra/
bgpd/
ospfd/
ospf6ed/

isisd/

14

Chapter 1. Process & Workflow

https://gcc.gnu.org/onlinedocs/gcc/Unnamed-Fields.html
https://gcc.gnu.org/onlinedocs/gcc/Unnamed-Fields.html

FRR Developer’s Manual, Release latest

* ripd/
e ripngd/
e vtysh/
BSD coding style applies to:
e 1dpd/

Python Code

Format all Python code with black.

In a line:

python3 -m black <file.py>

Run this on any Python files you modify before committing.

FRR’s Python code has been formatted with black version 19.10b.

YANG

FRR uses YANG to define data models for its northbound interface. YANG models should follow conventions used
by the IETF standard models. From a practical standpoint, this corresponds to the output produced by the yanglint
tool included in the 1ibyang project, which is used by FRR to parse and validate YANG models. You should run the
following command on all YANG documents you write:

yanglint -f yang <model>

The output of this command should be identical to the input file. The sole exception to this is comments. yanglint
does not support comments and will strip them from its output. You may include comments in your YANG documents,
but they should be indented appropriately (use spaces). Where possible, comments should be eschewed in favor of a
suitable description statement.

In short, a diff between your input file and the output of yanglint should either be empty or contain only comments.

Specific Exceptions

Most of the time checkpatch errors should be corrected. Occasionally as a group maintainers will decide to ignore cer-
tain stylistic issues. Usually this is because correcting the issue is not possible without large unrelated code changes.
When an exception is made, if it is unlikely to show up again and doesn’t warrant an update to checkpatch, it is docu-
mented here.

Issue Ignore Reason
DEFPY_HIDDEN, DEFPY_ATTR: complex | DEF* macros cannot be wrapped in parentheses without updating
macros should be wrapped in parentheses all usages of the macro, which would be highly disruptive.

1.6. Coding Practices & Style 15

https://github.com/psf/black

FRR Developer’s Manual, Release latest

1.6.6 Types of configurables

Note: This entire section essentially just argues to not make configuration unnecessarily involved for the user. Rather
than rules, this is more of a list of conclusions intended to help make FRR usable for operators.

Almost every feature FRR has comes with its own set of switches and options. There are several stages at which
configuration can be applied. In order of preference, these are:

e at configuration/runtime, through YANG.

This is the preferred way for all FRR knobs. Not all daemons and features are fully YANGified yet, so in some
cases new features cannot rely on a YANG interface. If a daemon already implements a YANG interface (even
partial), new CLI options must be implemented through a YANG model.

Warning: Unlike everything else in this section being guidelines with some slack, implementing and using
a YANG interface for new CLI options in (even partially!) YANGified daemons is a hard requirement.

* at configuration/runtime, through the CLI.
The “good old” way for all regular configuration. More involved for users to automate correctly than YANG.
* at startup, by loading additional modules.

If a feature introduces a dependency on additional libraries (e.g. libsnmp, rtrlib, etc.), this is the best way to
encapsulate the dependency. Having a separate module allows the distribution to create a separate package with
the extra dependency, so FRR can still be installed without pulling everything in.

A module may also be appropriate if a feature is large and reasonably well isolated. Reducing the amount of
running the code is a security benefit, so even if there are no new external dependencies, modules can be useful.

While modules cannot currently be loaded at runtime, this is a tradeoff decision that was made to allow modules
to change/extend code that is very hard to (re)adjust at runtime. If there is a case for runtime (un)loading of
modules, this tradeoff can absolutely be reevaluated.

* at startup, with command line options.

This interface is only appropriate for options that have an effect very early in FRR startup, i.e. before configu-
ration is loaded. Anything that affects configuration load itself should be here, as well as options changing the
environment FRR runs in.

If a tunable can be changed at runtime, a command line option is only acceptable if the configured value has an
effect before configuration is loaded (e.g. zebra reads routes from the kernel before loading config, so the netlink
buffer size is an appropriate command line option.)

* at compile time, with . /configure options.

This is the absolute last preference for tunables, since the distribution needs to make the decision for the user
and/or the user needs to rebuild FRR in order to change the option.

“Good” configure options do one of three things:

— set distribution-specific parameters, most prominently all the path options. File system layout is a distribu-
tion/packaging choice, so the user would hopefully never need to adjust these.

— changing toolchain behavior, e.g. instrumentation, warnings, optimizations and sanitizers.

— enabling/disabling parts of the build, especially if they need additional dependencies. Being able to build
only parts of FRR, or without some library, is useful. The only effect these options should have is adding

16 Chapter 1. Process & Workflow

FRR Developer’s Manual, Release latest

or removing files from the build result. If a knob in this category causes the same binary to exist in
different variants, it is likely implemented incorrectly!

Note: This last guideline is currently ignored by several configure options. vtysh in general depends on
the entire list of enabled daemons, and options like --enable-bgp-vnc and --enable-ospfapi change
daemons internally. Consider this more of an “ideal” than a “rule”.

Whenever adding new knobs, please try reasonably hard to go up as far as possible on the above list. Especially ./
configure flags are often enough the “easy way out” but should be avoided when at all possible. To a lesser degree,
the same applies to command line options.

1.6.7 Compile-time conditional code

Many users access FRR via binary packages from 3rd party sources; compile-time code puts inclusion/exclusion in
the hands of the package maintainer. Please think very carefully before making code conditional at compile time,
as it increases regression testing, maintenance burdens, and user confusion. In particular, please avoid gratuitous
--enable-. .. switches to the configure script - in general, code should be of high quality and in working condition,
or it shouldn’t be in FRR at all.

When code must be compile-time conditional, try have the compiler make it conditional rather than the C pre-processor
so that it will still be checked by the compiler, even if disabled. For example,

if (SOME_SYMBOL)
frobnicate();

is preferred to

#ifdef SOME_SYMBOL
frobnicate Q;
#endif /* SOME_SYMBOL */

Note that the former approach requires ensuring that SOME_SYMBOL will be defined (watch your AC_DEFINEs).

1.6.8 Debug-guards in code

Debugging statements are an important methodology to allow developers to fix issues found in the code after it has
been released. The caveat here is that the developer must remember that people will be using the code at scale and in
ways that can be unexpected for the original implementor. As such debugs MUST be guarded in such a way that they
can be turned off. FRR has the ability to turn on/off debugs from the CLI and it is expected that the developer will use
this convention to allow control of their debugs.

1.6.9 Custom syntax-like block macros

FRR uses some macros that behave like the for or if C keywords. These macros follow these patterns:
* loop-style macros are named frr_each_* (and frr_each)
* single run macros are named frr_with_*

* to avoid confusion, frr_with_* macros must always use a { ... } block even if the block only contains one
statement. The frr_each constructs are assumed to be well-known enough to use normal for rules.

* break, return and goto all work correctly. For loop-style macros, continue works correctly too.

1.6. Coding Practices & Style 17

FRR Developer’s Manual, Release latest

Both the each and with keywords are inspired by other (more higher-level) programming languages that provide these
constructs.

There are also some older iteration macros, e.g. ALL_LIST_ELEMENTS and FOREACH_AFI_SAFI. These macros in
some cases do not fulfill the above pattern (e.g. break does not work in FOREACH_AFI_SAFT because it expands to 2
nested loops.)

1.6.10 Static Analysis and Sanitizers

Clang/LLVM and GCC come with a variety of tools that can be used to help find bugs in FRR.

clang-analyze This is a static analyzer that scans the source code looking for patterns that are likely to be bugs. The
tool is run automatically on pull requests as part of CI and new static analysis warnings will be placed in the
CI results. FRR aims for absolutely zero static analysis errors. While the project is not quite there, code that
introduces new static analysis errors is very unlikely to be merged.

AddressSanitizer This is an excellent tool that provides runtime instrumentation for detecting memory errors. As part
of CI FRR is built with this instrumentation and run through a series of tests to look for any results. Testing your
own code with this tool before submission is encouraged. You can enable it by passing:

--enable-address-sanitizer

to configure.

ThreadSanitizer Similar to AddressSanitizer, this tool provides runtime instrumentation for detecting data races. If
you are working on or around multithreaded code, extensive testing with this instrumtation enabled is highly
recommended. You can enable it by passing:

--enable-thread-sanitizer

to configure.

MemorySanitizer Similar to AddressSanitizer, this tool provides runtime instrumentation for detecting use of unini-
tialized heap memory. Testing your own code with this tool before submission is encouraged. You can enable it
by passing:

--enable-memory-sanitizer

to configure.

All of the above tools are available in the Clang/LLVM toolchain since 3.4. AddressSanitizer and ThreadSanitizer are
available in recent versions of GCC, but are no longer actively maintained. MemorySanitizer is not available in GCC.

Note: The different Sanitizers are mostly incompatible with each other. Please refer to GCC/LLVM documentation
for details.

frr-format plugin This is a GCC plugin provided with FRR that does extended type checks for %pFX-style printfrr
extensions. To use this plugin,

1. install GCC plugin development files, e.g.:

apt-get install gcc-10-plugin-dev

2. before running configure, compile the plugin with:

18 Chapter 1. Process & Workflow

FRR Developer’s Manual, Release latest

make -C tools/gcc-plugins CXX=g++-10

(Edit the GCC version to what you’re using, it should work for GCC 9 or newer.)

After this, the plugin should be automatically picked up by configure. The plugin does not change very fre-
quently, so you can keep it around across work on different FRR branches. After a git clean -x, the make
line will need to be run again. You can also add --with-frr-format to the configure line to make sure the
plugin is used, otherwise if something is not set up correctly it might be silently ignored.

Warning: Do not enable this plugin for package/release builds. It is intended for developer/debug builds
only. Since it modifies the compiler, it may cause silent corruption of the executable files.

Using the plugin also changes the string for PRI [udx]64 from the system value to %L[udx] (normally
%11[udx] or %1 [udx].)

Additionally, the FRR codebase is regularly scanned with Coverity. Unfortunately Coverity does not have the ability to
handle scanning pull requests, but after code is merged it will send an email notifying project members with Coverity
access of newly introduced defects.

1.6.11 Executing non-installed dynamic binaries

Since FRR uses the GNU autotools build system, it inherits its shortcomings. To execute a binary directly from the
build tree under a wrapper like valgrind, gdb or strace, use:

./libtool --mode=execute valgrind [--valgrind-opts] zebra/zebra [--zebra-opts]

While replacing valgrind/zebra as needed. The libtool script is found in the root of the build directory after ./configure
has completed. Its purpose is to correctly set up LD_LIBRARY_PATH so that libraries from the build tree are used.
(On some systems, libtool is also available from PATH, but this is not always the case.)

1.6.12 CLI changes

CLT’s are a complicated ugly beast. Additions or changes to the CLI should use a DEFPY to encapsulate one setting
as much as is possible. Additionally as new DEFPY’s are added to the system, documentation should be provided for
the new commands.

1.6.13 Backwards Compatibility

As a general principle, changes to CLI and code in the lib/ directory should be made in a backwards compatible fashion.
This means that changes that are purely stylistic in nature should be avoided, e.g., renaming an existing macro or library
function name without any functional change. When adding new parameters to common functions, it is also good to
consider if this too should be done in a backward compatible fashion, e.g., by preserving the old form in addition to
adding the new form.

This is not to say that minor or even major functional changes to CLI and common code should be avoided, but rather
that the benefit gained from a change should be weighed against the added cost/complexity to existing code. Also, that
when making such changes, it is good to preserve compatibility when possible to do so without introducing maintenance
overhead/cost. It is also important to keep in mind, existing code includes code that may reside in private repositories
(and is yet to be submitted) or code that has yet to be migrated from Quagga to FRR.

That said, compatibility measures can (and should) be removed when either:

1.6. Coding Practices & Style 19

FRR Developer’s Manual, Release latest

* they become a significant burden, e.g. when data structures change and the compatibility measure would need a
complex adaptation layer or becomes flat-out impossible

» some measure of time (dependent on the specific case) has passed, so that the compatibility grace period is
considered expired.

For CLI commands, the deprecation period is 1 year.

In all cases, compatibility pieces should be marked with compiler/preprocessor annotations to print warnings at com-
pile time, pointing to the appropriate update path. A -Werror build should fail if compatibility bits are used. To
avoid compilation issues in released code, such compiler/preprocessor annotations must be ignored non-development
branches. For example:

#1f CONFDATE > 20180403
CPP_NOTICE("Use of <XYZ> is deprecated, please use <ABC>")
#endif

Preferably, the shell script tools/fixup-deprecated.py will be updated along with making non-backwards com-
patible code changes, or an alternate script should be introduced, to update the code to match the change. When the
script is updated, there is no need to preserve the deprecated code. Note that this does not apply to user interface
changes, just internal code, macros and libraries.

1.6.14 Miscellaneous

When in doubt, follow the guidelines in the Linux kernel style guide, or ask on the development mailing list / public
Slack instance.

JSON Output

* All JSON keys are to be camelCased, with no spaces
* Commands which output JSON should produce {} if they have nothing to display

Use of const

Please consider using const when possible: it’s a useful hint to callers about the limits to side-effects from your apis,
and it makes it possible to use your apis in paths that involve const objects. If you encounter existing apis that could
be const, consider including changes in your own pull-request.

Help with specific warnings

FRR'’s configure script enables a whole batch of extra warnings, some of which may not be obvious in how to fix. Here
are some notes on specific warnings:

e -Wstrict-prototypes: you probably just forgot the void in a function declaration with no parameters, i.e.
static void foo() {...} ratherthan static void foo(void) {...}.

Without the void, in C, it’s a function with unspecified parameters (and varargs calling convention.) This is a
notable difference to C++, where the void is optional and an empty parameter list means no parameters.

e "strict match required" from the frr-format plugin: check if you are using a cast in a printf param-
eter list. The frr-format plugin cannot access correct full type information for casts like printfrr(...
, (uint64_t)something, ...) and will print incorrect warnings particularly if uint64_t, size_t or
ptrdiff_t are involved. The problem is not triggered with a variable or function return value of the exact
same type (without a cast).

20 Chapter 1. Process & Workflow

FRR Developer’s Manual, Release latest

Since these cases are very rare, community consensus is to just work around the warning even though the code
might be correct. If you are running into this, your options are:

1. try to avoid the cast altogether, maybe using a different printf format specifier (e.g. %lu instead of %zu or
PRIu64).

2. fix the type(s) of the function/variable/struct member being printed

3. create a temporary variable with the value and print that without a cast (this is the last resort and was not
necessary anywhere so far.)

1.7 Documentation

FRR uses Sphinx+RST as its documentation system. The document you are currently reading was generated by Sphinx
from RST source in doc/developer/workflow.rst. The documentation is structured as follows:

Directory Contents

doc/user User documentation; configuration guides; protocol overviews

doc/ Developer’s documentation; API specs; datastructures; architecture overviews; project manage-
developer ment procedure

doc/ Source for manpages

manpages

doc/figures | Images and diagrams

doc/extra Miscellaneous Sphinx extensions, scripts, customizations, etc.

Each of these directories, with the exception of doc/figures and doc/extra, contains a Sphinx-generated Makefile
and configuration script conf. py used to set various document parameters. The makefile can be used for a variety of
targets; invoke make help in any of these directories for a listing of available output formats. For convenience, there is a
top-level Makefile.am that has targets for PDF and HTML documentation for both developer and user documentation,
respectively. That makefile is also responsible for building manual pages packed with distribution builds.

Indent and styling should follow existing conventions:
* 3 spaces for indents under directives
* Cross references may contain only lowercase alphanumeric characters and hyphens (‘-¢)
¢ Lines wrapped to 80 characters where possible
Characters for header levels should follow Python documentation guide:
* # with overline, for parts
 * with overline, for chapters
e —, for sections
e -, for subsections
e A for subsubsections
o " for paragraphs

After you have made your changes, please make sure that you can invoke make latexpdf and make html with no
warnings.

The documentation is currently incomplete and needs love. If you find a broken cross-reference, figure, dead hyperlink,
style issue or any other nastiness we gladly accept documentation patches.

1.7. Documentation 21

FRR Developer’s Manual, Release latest

To build the docs, please ensure you have installed a recent version of Sphinx. If you want to build LaTeX or PDF docs,
you will also need a full LaTeX distribution installed.

1.7.1 Code

FRR is a large and complex software project developed by many different people over a long period of time. Without
adequate documentation, it can be exceedingly difficult to understand code segments, APIs and other interfaces. In the
interest of keeping the project healthy and maintainable, you should make every effort to document your code so that
other people can understand what it does without needing to closely read the code itself.

Some specific guidelines that contributors should follow are:

 Functions exposed in header files should have descriptive comments above their signatures in the header file. At
a minimum, a function comment should contain information about the return value, parameters, and a general
summary of the function’s purpose. Documentation on parameter values can be omitted if it is (very) obvious
what they are used for.

Function comments must follow the style for multiline comments laid out in the kernel style guide.

Example:

/7’:

* Determines whether or not a string is cool.

* text
the string to check for coolness

* is_clccfc
whether capslock is cruise control for cool

* Returns:
7 if the text is cool, 0 otherwise
:':/

int check_coolness(const char *text, bool is_clccfc);

Function comments should make it clear what parameters and return values are used for.

» Static functions should have descriptive comments in the same form as above if what they do is not immediately
obvious. Use good engineering judgement when deciding whether a comment is necessary. If you are unsure,
document your code.

* Global variables, static or not, should have a comment describing their use.
* For new code in lib/, these guidelines are hard requirements.

If you make significant changes to portions of the codebase covered in the Developer’s Manual, add a major subsystem
or feature, or gain arcane mastery of some undocumented or poorly documented part of the codebase, please document
your work so others can benefit. If you add a major feature or introduce a new API, please document the architecture
and API to the best of your abilities in the Developer’s Manual, using good judgement when choosing where to place
it.

Finally, if you come across some code that is undocumented and feel like going above and beyond, document it! We
absolutely appreciate and accept patches that document previously undocumented code.

22 Chapter 1. Process & Workflow

http://www.sphinx-doc.org/en/stable/install.html

FRR Developer’s Manual, Release latest

1.7.2 User

If you are contributing code that adds significant user-visible functionality please document how to use it in doc/user.
Use good judgement when choosing where to place documentation. For example, instructions on how to use your
implementation of a new BGP draft should go in the BGP chapter instead of being its own chapter. If you are adding
a new protocol daemon, please create a new chapter.

1.7.3 FRR Specific Markup

FRR has some customizations applied to the Sphinx markup that go a long way towards making documentation easier
to use, write and maintain.

CLI Commands

When documenting CLI please use the .. clicmd:: directive. This directive will format the command and generate
index entries automatically. For example, the command show pony would be documented as follows:

. clicmd:: show pony

Prints an ASCII pony. Example output:::

>>\
/-)
VAR RLD RS
"\ A N
[\
\ /|
/N /. (N
<," NN
\\ O X/
hjw |>1> /-1 7/
/-1 /-1

When documented this way, CLI commands can be cross referenced with the :clicmd: inline markup like so:

:clicmd: show pony”

This is very helpful for users who want to quickly remind themselves what a particular command does.

When documenting a cli that has a no form, please do not include the no form. I.e. no show pony would not be
documented anywhere. Since most commands have no forms, users should be able to infer these or get help from
vtysh’s completions.

When documenting commands that have lots of possible variants, just document the single command in summary rather
than enumerating each possible variant. E.g. for show pony [foo|bar], do not:

. clicmd:: show pony
. clicmd:: show pony foo
. clicmd:: show pony bar

Do:

. clicmd:: show pony [foo|bar]

1.7. Documentation 23

FRR Developer’s Manual, Release latest

Configuration Snippets

When putting blocks of example configuration please use the .. code-block:: directive and specify frr as the
highlighting language, as in the following example. This will tell Sphinx to use a custom Pygments lexer to highlight

FRR configuration syntax.

. code-block:: frr

!
! Example configuration file.
!
log file /tmp/log.log
service integrated-vtysh-config
!
ip route 1.2.3.0/24 reject
ipv6 route de:ea:db:ee:ff::/64 reject
!

24 Chapter 1. Process & Workflow

CHAPTER
TWO

BUILDING FRR

2.1 Static Linking

This document describes how to build FRR without hard dependencies on shared libraries. Note that it’s not possible
to build FRR completely statically. This document just covers how to statically link the dependencies that aren’t likely
to be present on a given platform - libfrr and libyang. The resultant binaries should still be fairly portable. For example,
here is the DSO dependency list for bgpd after using these steps:

$ 1dd bgpd
linux-vdso.so.1 (0x00007ffe3a989000)
libstdc++.s0.6 => /usr/lib/x86_64-1linux-gnu/libstdc++.s0.6 (0x00007£f9dc10c0000)
libcap.so.2 => /1ib/x86_64-1inux-gnu/libcap.so.2 (0x00007f9dcOeba®dld)
libm.so.6 => /1ib/x86_64-1inux-gnu/libm.so.6 (0x00007f9dcO®blcO00)
libdl.so.2 => /1ib/x86_64-1inux-gnu/libdl.so.2 (0x00007f9dc0918000)
libcrypt.so.1l => /1lib/x86_64-1linux-gnu/libcrypt.so.1l (0x00007f9dc06e0000)
libjson-c.s0.3 => /1ib/x86_64-1inux-gnu/libjson-c.so0.3 (0x00007f9dc0®4d5000)
librt.so.1 => /1ib/x86_64-1inux-gnu/librt.so.1 (0x00007f9dc02cd®00)
libpthread.so.® => /1ib/x86_64-1inux-gnu/libpthread.so.® (0x00007f9dc00ae®00)
libgcc_s.so.1 => /1lib/x86_64-1linux-gnu/libgcc_s.so.1 (0x00007f9dbfe96000)
libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so.6 (0x00007f9dbfaa5000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£9dc1449000)

2.1.1 Procedure

Note that these steps have only been tested with LLVM 9 / clang.

Today, libfrr can already be statically linked by passing these configure options:

--enable-static --enable-static-bin --enable-shared

libyang is more complicated. You must build and install libyang as a static library. To do this, follow the usual libyang
build procedure as listed in the FRR developer docs, but set the ENABLE_STATIC option in your cmake invocation. You
also need to build with PIC enabled, which today is disabled when building libyang statically.

The resultant cmake command is:

cmake -DENABLE_STATIC=ON -DENABLE_LYD_PRIV=ON \
-DCMAKE_INSTALL_PREFIX:PATH=/usr \
-DCMAKE_POSITION_INDEPENDENT_CODE=TRUE \
-DCMAKE_BUILD_TYPE:String="Release"

25

FRR Developer’s Manual, Release latest

This produces a bunch of . a static archives that need to ultimately be linked into FRR. However, not only is it 6 archives
rather than the usual 1ibyang.so, you will now also need to link FRR with 1libpcre.a. Ubuntu’s libpcre3-dev
package provides this, but it hasn’t been built with PIC enabled, so it’s not usable for our purposes. So download
libpcre from SourceForge, and build it like this:

./configure --with-pic
make

Hopefully you get a nice, usable, PIC 1libpcre.a.

So now we have to link all these static libraries into FRR. Rather than modify FRR to accommodate this, the best option
is to create an archive with all of libyang’s dependencies. Then to avoid making any changes to FRR build foo, rename
this 1ibyang.a and copy it over the usual static library location. Ugly but it works. To do this, go into your libyang
build directory, which should have a bunch of .a files. Copy libpcre.a into this directory. Write the following into
a shell script and run it:

#!/bin/bash
ar -M <<EOM
CREATE libyang_fat.a
ADDLIB libyang.a
ADDLIB libyangdata.a
ADDLIB libmetadata.a
ADDLIB libnacm.a
ADDLIB libuser_inet_types.a
ADDLIB libuser_yang_types.a
ADDLIB libpcre.a
SAVE
END
EOM
ranlib libyang_fat.a

libyang_fat.a is your archive. Now copy this over your install l1ibyang.a, which on my machine is located at
/usr/lib/x86_64-1linux-gnu/libyang.a (try locate libyang.a if not).

Now when you build FRR with the static options enabled as above, clang should pick up the static libyang and link it,
leaving you with FRR binaries that have no hard DSO dependencies beyond common system libraries. To verify, run
1dd over the resultant binaries.

2.2 Alpine Linux 3.7+

For building Alpine Linux dev packages, we use docker.

2.2.1 Install docker 17.05 or later

Depending on your host, there are different ways of installing docker. Refer to the documentation here for instructions
on how to install a free version of docker: https://www.docker.com/community-edition

26 Chapter 2. Building FRR

https://sourceforge.net/projects/pcre/
https://www.docker.com/community-edition

FRR Developer’s Manual, Release latest

2.2.2 Pre-built packages and docker images

The master branch of https://github.com/frrouting/frr.git has a continuous delivery of docker images to docker hub
at: https://hub.docker.com/r/ajones17/frr/. These images have the frr packages in /pkgs/apk and have the frr package
pre-installed. To copy Alpine packages out of these images:

id="docker create ajonesl7/frr:latest’
docker cp ${id}:/pkgs _some_directory_
docker rm $id

To run the frr daemons (see below for how to configure them):

docker run -it --rm --name frr ajonesl7/frr:latest
docker exec -it frr /bin/sh

2.2.3 Work with sources

git clone https://github.com/frrouting/frr.git frr
cd frr

2.2.4 Build apk packages

./docker/alpine/build.sh

This will put the apk packages in:

./docker/pkgs/apk/x86_64/

2.2.5 Usage

To create a base image with the frr packages installed:

docker build --rm -f docker/alpine/Dockerfile -t frr:latest .

Or, if you don’t have a git checkout of the sources, you can build a base image directly off the github account:

docker build --rm -f docker/alpine/Dockerfile -t frr:latest \
https://github.com/frrouting/frr.git

And to run the image:

docker run -it --rm --name frr frr:latest

In the default configuration, none of the frr daemons will be running. To configure the daemons, exec into the container
and edit the configuration files or mount a volume with configuration files into the container on startup. To configure
by hand:

docker exec -it frr /bin/sh
vi /etc/frr/daemons
/etc/init.d/frr start

2.2. Alpine Linux 3.7+ 27

https://github.com/frrouting/frr.git
https://hub.docker.com/r/ajones17/frr/

FRR Developer’s Manual, Release latest

Or, to configure the daemons using /etc/frr from a host volume, put the config files in, say, ./docker/etc and bind mount
that into the container:

docker run -it --rm -v “pwd’ /docker/etc:/etc/frr frr:latest

We can also build the base image directly from docker-compose, with a docker-compose.yml file like this one:

version: '2.2'

services:
frr:
build:
context: https://github.com/frrouting/frr.git
dockerfile: docker/alpine/Dockerfile

2.3 CentOS 6

This document describes installation from source. If you want to build an RPM, see Packaging Red Hat.

Instructions are tested with CentOS 6.8 on x86_64 platform

2.3.1 Warning:

CentOS 6 is very old and not fully supported by the FRR community anymore. Building FRR takes multiple manual
steps to update the build system with newer packages than what’s available from the archives. However, the built
packages can still be installed afterwards on a standard CentOS 6 without any special packages.

Support for CentOS 6 is now on a best-effort base by the community.

2.3.2 CentOS 6 restrictions:

* PIMd is not supported on CentOS 6. Upgrade to Cent0S 7 if PIMd is needed

e MPLS is not supported on CentOS 6. MPLS requires Linux Kernel 4.5 or higher (LDP can be built, but may
have limited use without MPLS)

e Zebra is unable to detect what bridge/vrf an interface is associated with (IFLA_INFO_SLAVE_KIND does not
exist in the kernel headers, you can use a newer kernel + headers to get this functionality)

e frr_reload.py will not work, as this requires Python 2.7, and CentOS 6 only has 2.6. You can install Python 2.7
via IUS, but it won’t work properly unless you compile and install the ipaddr package for it.

* Building the package requires Sphinx >=1.1. Only a non-standard package provides a newer sphinx and requires
manual installation (see below)

28 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

2.3.3 Install required packages

Add packages:

sudo yum install git autoconf automake libtool make \
readline-devel texinfo net-snmp-devel groff pkgconfig \
json-c-devel pam-devel flex epel-release c-ares-devel libcap-devel \
elfutils-libelf-devel

Install newer version of bison (CentOS 6 package source is too old) from CentOS 7:

sudo yum install rpm-build

curl -0 http://vault.centos.org/7.0.1406/0s/Source/SPackages/bison-2.7-4.el7.src.rpm
rpmbuild --rebuild ./bison-2.7-4.el7.src.rpm

sudo yum install ./rpmbuild/RPMS/x86_64/bison-2.7-4.e16.x86_64.rpm

rm -rf rpmbuild

Install newer version of autoconf and automake (Package versions are too old):

curl -0 http://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz
tar xvf autoconf-2.69.tar.gz

cd autoconf-2.69

./configure --prefix=/usr

make

sudo make install

cd ..

curl -0 http://ftp.gnu.org/gnu/automake/automake-1.15.tar.gz
tar xvf automake-1.15.tar.gz

cd automake-1.15

./configure --prefix=/usr

make

sudo make install

cd ..

Install Python 2.7 in parallel to default 2.6. Make sure you’ve install EPEL (epel-release as above). Then install
current python27: python27-devel and pytest

sudo rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
sudo rpm -ivh https://centos6.iuscommunity.org/ius-release.rpm

sudo yum install python27 python27-pip python27-devel

sudo pip2.7 install pytest

Please note that CentOS 6 needs to keep python pointing to version 2.6 for yum to keep working, so don’t create a
symlink for python2.7 to python.

Install newer Sphinx-Build based on Python 2.7.

Create a new repo /etc/yum.repos.d/puias6.repo with the following contents:

Name: RPM Repository for RHEL 6 - PUIAS (used for Sphinx-Build)

URL: http://springdale.math.ias.edu/data/puias/computational

[puias-computational]

name = RPM Repository for RHEL 6 - Sphinx-Build

baseurl = http://springdale.math.ias.edu/data/puias/computational/$releasever/$basearch

(continues on next page)

2.3. CentOS 6 29

FRR Developer’s Manual, Release latest

(continued from previous page)

#mirrorlist =
enabled = 1
protect = 0
gpgkey =
gpgcheck = 0

Update rpm database & Install newer sphinx

sudo yum update
sudo yum install python27-sphinx

Install libyang and its dependencies:

sudo yum install pcre-devel doxygen cmake

git clone https://github.com/CESNET/libyang.git

cd libyang

git checkout 090926a89d59a3c4000719505d563aaf6ac60£2

mkdir build ; cd build

cmake -DENABLE_LYD_PRIV=ON -DCMAKE_INSTALL_PREFIX:PATH=/usr -D CMAKE_BUILD_TYPE:String=
—"Release" ..

make build-rpm

sudo yum install ./rpms/RPMS/x86_64/libyang-0.16.111-0.x86_64.rpm ./rpms/RPMS/x86_64/
—libyang-devel-0.16.111-0.x86_64.rpm

cd ../..

2.3.4 Get FRR, compile it and install it (from Git)

This assumes you want to build and install FRR from source and not using any packages

Add frr groups and user

sudo groupadd -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo useradd -u 92 -g 92 -M -r -G frrvty -s /sbin/nologin \
-c "FRR FRRouting suite" -d /var/run/frr frr

Download Source, configure and compile it

(You may prefer different options on configure statement. These are just an example.)

git clone https://github.com/frrouting/frr.git frr
cd frr
./bootstrap.sh
./configure \
--bindir=/usr/bin \
--sbindir=/usr/lib/frr \
--sysconfdir=/etc/frr \
--1libdir=/usr/lib/frr \
--libexecdir=/usr/lib/frr \

(continues on next page)

30 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

(continued from previous page)

--localstatedir=/var/run/frr \
--with-moduledir=/usr/lib/frr/modules \
--disable-pimd \
--enable-snmp=agentx \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--disable-1dpd \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion
make
make check
sudo make install

Create empty FRR configuration files

sudo mkdir /var/log/frr
sudo mkdir /etc/frr

For integrated config file:

sudo touch /etc/frr/frr.conf

For individual config files:

Note: Integrated config is preferred to individual config.

sudo touch /etc/frr/babeld.conf
sudo touch /etc/frr/bfdd.conf
sudo touch /etc/frr/bgpd.conf
sudo touch /etc/frr/eigrpd.conf
sudo touch /etc/frr/isisd.conf
sudo touch /etc/frr/ldpd.conf
sudo touch /etc/frr/nhrpd.conf
sudo touch /etc/frr/ospf6d.conf
sudo touch /etc/frr/ospfd.conf
sudo touch /etc/frr/pbrd.conf
sudo touch /etc/frr/pimd.conf
sudo touch /etc/frr/ripd.conf
sudo touch /etc/frr/ripngd.conf
sudo touch /etc/frr/staticd.conf
sudo touch /etc/frr/zebra.conf
sudo chown -R frr:frr /etc/frr/
sudo touch /etc/frr/vtysh.conf
sudo chown frr:frrvty /etc/frr/vtysh.conf
sudo chmod 640 /etc/frr/*.conf

2.3. CentOS 6

31

FRR Developer’s Manual, Release latest

Install daemon config file

sudo install -p -m 644 tools/etc/frr/daemons /etc/frr/
sudo chown frr:frr /etc/frr/daemons

Edit /etc/frr/daemons as needed to select the required daemons

Look for the section with watchfrr_enable=. .. and zebra=. .. etc. Enable the daemons as required by changing

the value to yes

Enable IP & IPv6 forwarding

Edit /etc/sysctl.conf and set the following values (ignore the other settings):

Controls IP packet forwarding
net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding=1

Controls source route verification
net.ipv4.conf.default.rp_filter = 0

Load the modified sysctl’s on the system:

sudo sysctl -p /etc/sysctl.d/90-routing-sysctl.conf

Add init.d startup file

sudo install -p -m 755 tools/frr /etc/init.d/frr
sudo chkconfig --add frr

Enable FRR daemon at startup

sudo chkconfig frr on

Start FRR manually (or reboot)

sudo /etc/init.d/frr start

32

Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

2.4 CentOS 7

This document describes installation from source. If you want to build an RPM, see Packaging Red Hat.

2.4.1 CentOS 7 restrictions:

e MPLS is not supported on CentOS 7 with default kernel. MPLS requires Linux Kernel 4.5 or higher (LDP can
be built, but may have limited use without MPLS)

2.4.2 Install required packages

Add packages:

sudo yum install git autoconf automake libtool make \
readline-devel texinfo net-snmp-devel groff pkgconfig \
json-c-devel pam-devel bison flex pytest c-ares-devel \
python-devel python-sphinx libcap-devel \
elfutils-libelf-devel libunwind-devel

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

2.4. CentOS7 33

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

2.4.3 Get FRR, compile it and install it (from Git)

This assumes you want to build and install FRR from source and not using any packages

Add frr groups and user

sudo groupadd -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo useradd -u 92 -g 92 -M -r -G frrvty -s /sbin/nologin \
-c "FRR FRRouting suite" -d /var/run/frr frr

Download Source, configure and compile it

(You may prefer different options on configure statement. These are just an example.)

git clone https://github.com/frrouting/frr.git frr

cd frr

./bootstrap.sh

./configure \
--bindir=/usr/bin \
--sbindir=/usr/lib/frr \
--sysconfdir=/etc/frr \
--1libdir=/usr/lib/frr \
--libexecdir=/usr/lib/frr \
--localstatedir=/var/run/frr \
--with-moduledir=/usr/lib/frr/modules \
--enable-snmp=agentx \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--disable-1dpd \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion \
SPHINXBUILD=/usr/bin/sphinx-build

make

make check

sudo make install

34 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

Create empty FRR configuration files

sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo
sudo

mkdir /var/log/frr

mkdir /etc/frr

touch /etc/frr/zebra.conf
touch /etc/frr/bgpd.conf
touch /etc/frr/ospfd.conf
touch /etc/frr/ospf6d.conf
touch /etc/frr/isisd.conf
touch /etc/frr/ripd.conf
touch /etc/frr/ripngd.conf
touch /etc/frr/pimd.conf
touch /etc/frr/nhrpd.conf
touch /etc/frr/eigrpd.conf
touch /etc/frr/babeld.conf
chown -R frr:frr /etc/frr/
touch /etc/frr/vtysh.conf
chown frr:frrvty /etc/frr/vtysh.conf
chmod 640 /etc/frr/*.conf

Install daemon config file

sudo install -p -m 644 tools/etc/frr/daemons /etc/frr/

sudo

chown frr:frr /etc/frr/daemons

Edit /etc/frr/daemons as needed to select the required daemons

Look for the section with watchfrr_enable=...

the value to yes

Enable IP & IPv6 forwarding

and zebra=...

etc. Enable the daemons as required by changing

Create a new file /etc/sysctl.d/90-routing-sysctl.conf with the following content:

Sysctl for routing

#

Routing: We need to forward packets
net.ipv4.conf.all.forwarding=1
net.ipv6.conf.all. forwarding=1

Load the modified sysctl’s on the system:

sudo sysctl -p /etc/sysctl.d/90-routing-sysctl.conf

2.4. CentOS7

35

FRR Developer’s Manual, Release latest

Install frr Service

sudo install -p -m 644 tools/frr.service /usr/lib/systemd/system/frr.service

Register the systemd files

sudo systemctl preset frr.service

Enable required frr at startup

sudo systemctl enable frr

Reboot or start FRR manually

sudo systemctl start frr

2.5 CentOS 8

This document describes installation from source. If you want to build an RPM, see Packaging Red Hat.

2.5.1 Install required packages

Add packages:

sudo dnf install --enablerepo=PowerTools git autoconf pcre-devel \
automake libtool make readline-devel texinfo net-snmp-devel pkgconfig \
groff pkgconfig json-c-devel pam-devel bison flex python2-pytest \
c-ares-devel python2-devel libcap-devel \
elfutils-libelf-devel libunwind-devel

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

36 Chapter 2. Building FRR

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact

FRR Developer’s Manual, Release latest

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The 1libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

2.5.2 Get FRR, compile it and install it (from Git)

This assumes you want to build and install FRR from source and not using any packages

Add frr groups and user

sudo groupadd -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo useradd -u 92 -g 92 -M -r -G frrvty -s /sbin/nologin \
-c "FRR FRRouting suite" -d /var/run/frr frr

Download Source, configure and compile it

(You may prefer different options on configure statement. These are just an example.)

git clone https://github.com/frrouting/frr.git frr
cd frr
./bootstrap.sh
./configure \
--bindir=/usr/bin \
--sbindir=/usr/lib/frr \
--sysconfdir=/etc/frr \
--1libdir=/usr/lib/frr \
--libexecdir=/usr/lib/frr \

(continues on next page)

2.5. CentOS 8 37

https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

--localstatedir=/var/run/frr \
--with-moduledir=/usr/lib/frr/modules \
--enable-snmp=agentx \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--disable-1dpd \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion \
SPHINXBUILD=/usr/bin/sphinx-build

make

make check

sudo make install

Create empty FRR configuration files

sudo mkdir /var/log/frr

sudo mkdir /etc/frr

sudo touch /etc/frr/zebra.conf
sudo touch /etc/frr/bgpd.conf
sudo touch /etc/frr/ospfd.conf
sudo touch /etc/frr/ospf6d.conf
sudo touch /etc/frr/isisd.conf
sudo touch /etc/frr/ripd.conf
sudo touch /etc/frr/ripngd.conf
sudo touch /etc/frr/pimd.conf
sudo touch /etc/frr/nhrpd.conf
sudo touch /etc/frr/eigrpd.conf
sudo touch /etc/frr/babeld.conf
sudo chown -R frr:frr /etc/frr/
sudo touch /etc/frr/vtysh.conf
sudo chown frr:frrvty /etc/frr/vtysh.conf
sudo chmod 640 /etc/frr/*.conf

38

Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

Install daemon config file

sudo install -p -m 644 tools/etc/frr/daemons /etc/frr/
sudo chown frr:frr /etc/frr/daemons

Edit /etc/frr/daemons as needed to select the required daemons

Look for the section with watchfrr_enable=. .. and zebra=. .. etc. Enable the daemons as required by changing
the value to yes

Enable IP & IPv6 forwarding

Create a new file /etc/sysctl.d/90-routing-sysctl.conf with the following content:

Sysctl for routing

#

Routing: We need to forward packets
net.ipv4.conf.all. forwarding=1
net.ipv6.conf.all.forwarding=1

Load the modified sysctl’s on the system:

sudo sysctl -p /etc/sysctl.d/90-routing-sysctl.conf

Install frr Service

sudo install -p -m 644 tools/frr.service /usr/lib/systemd/system/frr.service

Register the systemd files

sudo systemctl preset frr.service

Enable required frr at startup

sudo systemctl enable frr

Reboot or start FRR manually

sudo systemctl start frr

2.5. CentOS 8 39

FRR Developer’s Manual, Release latest

2.6 Debian 8

2.6.1 Debian 8 restrictions:

* MPLS is not supported on Debian 8 with default kernel. MPLS requires Linux Kernel 4.5 or higher (LDP can
be built, but may have limited use without MPLS)

2.6.2 Install required packages

Add packages:

sudo apt-get install git autoconf automake libtool make \
libreadline-dev texinfo libjson-c-dev pkg-config bison flex python3-pip \
libc-ares-dev python3-dev python3-sphinx build-essential \
libsnmp-dev libcap-dev libelf-dev

Install newer pytest (>3.0) from pip

sudo pip3 install pytest

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang

git checkout v2.0.0

mkdir build; cd build

cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \

(continues on next page)

40 Chapter 2. Building FRR

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

2.6.3 Get FRR, compile it and install it (from Git)

This assumes you want to build and install FRR from source and not using any packages

Add frr groups and user

sudo addgroup --system --gid 92 frr

sudo addgroup --system --gid 85 frrvty

sudo adduser --system --ingroup frr --home /var/run/frr/ \
--gecos "FRR suite" --shell /bin/false frr

sudo usermod -a -G frrvty frr

Download Source, configure and compile it

(You may prefer different options on configure statement. These are just an example.)

git clone https://github.com/frrouting/frr.git frr
cd frr
./bootstrap.sh
./configure \
--localstatedir=/var/run/frr \
--sbindir=/usr/lib/frr \
--sysconfdir=/etc/frr \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion
make
make check
sudo make install

2.6. Debian 8 41

FRR Developer’s Manual, Release latest

Create empty FRR configuration files

sudo install -m 755 -o frr -g frr -d /var/log/frr

sudo install -m 775 -o frr -g frrvty -d /etc/frr

sudo install -m 640 -o frr -g frr /dev/null /etc/frr/zebra.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/bgpd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ospfd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ospf6d.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/isisd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ripd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ripngd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/pimd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ldpd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/nhrpd.conf
sudo install -m 640 -o frr -g frrvty /dev/null /etc/frr/vtysh.conf

Enable IP & IPv6 forwarding

Edit /etc/sysctl.conf and uncomment the following values (ignore the other settings)

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

Uncomment the next line to enable packet forwarding for IPv6

Enabling this option disables Stateless Address Autoconfiguration
based on Router Advertisements for this host
net.ipv6.conf.all.forwarding=1

Reboot or use sysctl -p to apply the same config to the running system

Troubleshooting

Local state directory

The local state directory must exist and have the correct permissions applied for the frrouting daemons to start. In the
above ./configure example the local state directory is set to /var/run/frr (—localstatedir=/var/run/frr) Debian considers
/var/run/frr to be temporary and this is removed after a reboot.

When using a different local state directory you need to create the new directory and change the ownership to the frr
user, for example:

mkdir /var/opt/frr
chown frr /var/opt/frr

Shared library error

If you try and start any of the frrouting daemons you may see the below error due to the frrouting shared library directory
not being found:

./zebra: error while loading shared libraries: libfrr.so.0: cannot open shared object.
-.file: No such file or directory

42 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

The fix is to add the following line to /etc/ld.so.conf which will continue to reference the library directory after the
system reboots. To load the library directory path immediately run the Idconfig command after adding the line to the
file eg:

echo include /usr/local/lib >> /etc/ld.so.conf
ldconfig

2.7 Debian 9

2.7.1 Install required packages

Add packages:

sudo apt-get install git autoconf automake libtool make \
libreadline-dev texinfo libjson-c-dev pkg-config bison flex \
libc-ares-dev python3-dev python3-pytest python3-sphinx build-essential \
libsnmp-dev libcap-dev libelf-dev libunwind-dev

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

FRR depends on the relatively new libyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

2.7. Debian 9 43

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

2.7.2 Get FRR, compile it and install it (from Git)

This assumes you want to build and install FRR from source and not using any packages

Add frr groups and user

sudo addgroup --system --gid 92 frr

sudo addgroup --system --gid 85 frrvty

sudo adduser --system --ingroup frr --home /var/opt/frr/ \
--gecos "FRR suite" --shell /bin/false frr

sudo usermod -a -G frrvty frr

Download Source, configure and compile it

(You may prefer different options on configure statement. These are just an example.)

git clone https://github.com/frrouting/frr.git frr
cd frr
./bootstrap.sh
./configure \
--localstatedir=/var/opt/frr \
--sbindir=/usr/lib/frr \
--sysconfdir=/etc/frr \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion
make
make check
sudo make install

44 Chapter 2.

Building FRR

FRR Developer’s Manual, Release latest

Create empty FRR configuration files

sudo install -m 755 -o frr -g frr -d /var/log/frr

sudo install -m 755 -o frr -g frr -d /var/opt/frr

sudo install -m 775 -o frr -g frrvty -d /etc/frr

sudo install -m 640 -o frr -g frr /dev/null /etc/frr/zebra.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/bgpd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ospfd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ospf6d.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/isisd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ripd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ripngd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/pimd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/ldpd.conf
sudo install -m 640 -o frr -g frr /dev/null /etc/frr/nhrpd.conf
sudo install -m 640 -o frr -g frrvty /dev/null /etc/frr/vtysh.conf

Enable IP & IPv6 forwarding

Edit /etc/sysctl.conf and uncomment the following values (ignore the other settings)

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

Uncomment the next line to enable packet forwarding for IPv6

Enabling this option disables Stateless Address Autoconfiguration
based on Router Advertisements for this host

net.ipv6.conf.all. forwarding=1

Reboot or use sysctl -p to apply the same config to the running system

2.7.3 Troubleshooting

Shared library error

If you try and start any of the frrouting daemons you may see the below error due to the frrouting shared library directory
not being found:

./zebra: error while loading shared libraries: libfrr.so.0: cannot open
shared object file: No such file or directory

The fix is to add the following line to /etc/ld.so.conf which will continue to reference the library directory after the
system reboots. To load the library directory path immediately run the ldconfig command after adding the line to the
file eg:

echo include /usr/local/lib >> /etc/ld.so.conf
ldconfig

2.7. Debian 9 45

FRR Developer’s Manual, Release latest

2.8 Fedora 24+

This document describes installation from source. If you want to build an RPM, see Packaging Red Hat.

These instructions have been tested on Fedora 24+.

2.8.1 Installing Dependencies

sudo dnf install git autoconf automake libtool make \
readline-devel texinfo net-snmp-devel groff pkgconfig json-c-devel \
pam-devel python3-pytest bison flex c-ares-devel python3-devel \
python3-sphinx perl-core patch libcap-devel \
elfutils-libelf-devel libunwind-devel

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..

(continues on next page)

46 Chapter 2. Building FRR

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

make
sudo make install

2.8.2 Building & Installing FRR

Add FRR user and groups

sudo groupadd -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo useradd -u 92 -g 92 -M -r -G frrvty -s /sbin/nologin \
-c "FRR FRRouting suite" -d /var/run/frr frr

Compile

Clone the FRR git repo and use the included configure script to configure FRR’s build time options to your liking.
The full option listing can be obtained by running . /configure -h. The options shown below are examples.

git clone https://github.com/frrouting/frr.git frr

cd frr

./bootstrap.sh

./configure \
--prefix=/usr \
--includedir=\${prefix}/include \
--bindir=\${prefix}/bin \
--sbindir=\${prefix}/lib/frr \
--libdir=\${prefix}/lib/frr \
--libexecdir=\${prefix}/lib/frr \
--localstatedir=/var/run/frr \
--sysconfdir=/etc/frr \
--with-moduledir=\${prefix}/lib/frr/modules \
--with-libyang-pluginsdir=\${prefix}/lib/frr/libyang_plugins \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-snmp=agentx \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion

make

sudo make install

2.8. Fedora 24+ 47

FRR Developer’s Manual, Release latest

Install FRR configuration files

sudo install -m 775 -o frr -g frr -d /var/log/frr

sudo install -m 775 -o frr -g frrvty -d /etc/frr

sudo install -m 640 -o frr -g frrvty tools/etc/frr/vtysh.conf /etc/frr/vtysh.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/frr.conf /etc/frr/frr.conf

sudo install -m 640 -o frr -g frr tools/etc/frr/daemons.conf /etc/frr/daemons.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/daemons /etc/frr/daemons

Tweak sysctls

Some sysctls need to be changed in order to enable IPv4/IPv6 forwarding and MPLS (if supported by your platform).
If your platform does not support MPLS, skip the MPLS related configuration in this section.

Create a new file /etc/sysctl.d/90-routing-sysctl.conf with the following content:

#

Enable packet forwarding

#

net.ipv4.conf.all. forwarding=1
net.ipv6.conf.all. forwarding=1

#

Enable MPLS Label processing on all interfaces
#

#net.mpls.conf.eth®.input=1
#net.mpls.conf.ethl.input=1
#net.mpls.conf.eth2.input=1
#net.mpls.platform_labels=100000

Note: MPLS must be invidividually enabled on each interface that requires it. See the example in the config block
above.

Load the modified sysctls on the system:

sudo sysctl -p /etc/sysctl.d/90-routing-sysctl.conf

Create a new file /etc/modules-load.d/mpls.conf with the following content:

Load MPLS Kernel Modules
mpls-router
mpls-iptunnel

And load the kernel modules on the running system:

sudo modprobe mpls-router mpls-iptunnel

Note: Fedora ships with the firewalld service enabled. You may run into some issues with the iptables rules it
installs by default. If you wish to just stop the service and clear ALL rules do these commands:

48 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

sudo systemctl disable firewalld.service
sudo systemctl stop firewalld.service
sudo iptables -F

Install frr Service

sudo install -p -m 644 tools/frr.service /usr/lib/systemd/system/frr.service
sudo systemctl enable frr

Enable daemons

Open /etc/frr/daemons with your text editor of choice. Look for the section with watchfrr_enable=...

zebra=. .. etc. Enable the daemons as required by changing the value to yes.

Start FRR

and

sudo systemctl start frr

2.9 openSUSE

This document describes installation from source.

These instructions have been tested on openSUSE Tumbleweed in a Raspberry Pi 400.

2.9.1 Installing Dependencies

zypper in git autoconf automake libtool make \
readline-devel texinfo net-snmp-devel groff pkgconfig libjson-c-devel\
pam-devel python3-pytest bison flex c-ares-devel python3-devel\
python3-Sphinx perl patch libcap-devel libyang-devel \
libelf-devel libunwind-devel

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

2.9. openSUSE

49

FRR Developer’s Manual, Release latest

2.9.2 Building & Installing FRR

Add FRR user and groups

sudo groupadd -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo useradd -u 92 -g 92 -M -r -G frrvty -s /sbin/nologin \
-c "FRR FRRouting suite" -d /var/run/frr frr

Compile

Clone the FRR git repo and use the included configure script to configure FRR’s build time options to your liking.
The full option listing can be obtained by running . /configure -h. The options shown below are examples.

git clone https://github.com/frrouting/frr.git frr

cd frr

./bootstrap.sh

./configure \
--prefix=/usr \
--includedir=\${prefix}/include \
--bindir=\${prefix}/bin \
--sbindir=\${prefix}/lib/frr \
--libdir=\${prefix}/lib/frr \
--libexecdir=\${prefix}/lib/frr \
--localstatedir=/var/run/frr \
--sysconfdir=/etc/frr \
--with-moduledir=\${prefix}/1lib/frr/modules \
--with-libyang-pluginsdir=\${prefix}/lib/frr/libyang_plugins \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-snmp=agentx \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion

make

sudo make install

Install FRR configuration files

sudo install -m 775 -o frr -g frr -d /var/log/frr

sudo install -m 775 -o frr -g frrvty -d /etc/frr

sudo install -m 640 -o frr -g frrvty tools/etc/frr/vtysh.conf /etc/frr/vtysh.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/frr.conf /etc/frr/frr.conf

sudo install -m 640 -o frr -g frr tools/etc/frr/daemons.conf /etc/frr/daemons.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/daemons /etc/frr/daemons

50 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

Note: In some platforms like raspberry for performance reasons some directories are in file systems (/var/run, ...)
mounted with tempfs so will disapear after every reboot. In frr the /var/run/frr is used to store pid files for every daemon.

Tweak sysctls

Some sysctls need to be changed in order to enable IPv4/IPv6 forwarding and MPLS (if supported by your platform).
If your platform does not support MPLS, skip the MPLS related configuration in this section.

Create a new file /etc/sysctl.d/90-routing-sysctl.conf with the following content:

#

Enable packet forwarding

#

net.ipv4.conf.all. forwarding=1
net.ipv6.conf.all. forwarding=1

#

Enable MPLS Label processing on all interfaces
#

#net.mpls.conf.eth®.input=1
#net.mpls.conf.ethl.input=1
#net.mpls.conf.eth2.input=1
#net.mpls.platform_labels=100000

Note: MPLS must be invidividually enabled on each interface that requires it. See the example in the config block
above.

Load the modified sysctls on the system:

sudo sysctl -p /etc/sysctl.d/90-routing-sysctl.conf

Create a new file /etc/modules-load.d/mpls.conf with the following content:

Load MPLS Kernel Modules
mpls-router
mpls-iptunnel

And load the kernel modules on the running system:

sudo modprobe mpls-router mpls-iptunnel

Note: The firewalld service could be enabled. You may run into some issues with the iptables rules it installs by
default. If you wish to just stop the service and clear ALL rules do these commands:

sudo systemctl disable firewalld.service
sudo systemctl stop firewalld.service
sudo iptables -F

2.9. openSUSE 51

FRR Developer’s Manual, Release latest

Install frr Service

sudo install -p -m 644 tools/frr.service /usr/lib/systemd/system/frr.service
sudo systemctl enable frr

Enable daemons

Open /etc/frr/daemons with your text editor of choice. Look for the section with bgpd=no etc. Enable the daemons
as required by changing the value to yes.

Start FRR

sudo systemctl start frr

Check the starting messages of frr with

journalctl -u frr --follow

2.10 FreeBSD 10

2.10.1 FreeBSD 10 restrictions:

* MPLS is not supported on FreeBSD. MPLS requires a Linux Kernel (4.5 or higher). LDP can be built, but may
have limited use without MPLS

2.10.2 Install required packages

Add packages: (Allow the install of the package management tool if this is first package install and asked)

pkg install git autoconf automake libtool gmake json-c pkgconf \
bison flex py36-pytest c-ares python3.6 py36-sphinx libunwind

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

Make sure there is no /usr/bin/flex preinstalled (and use the newly installed in /ust/local/bin): (FreeBSD frequently
provides a older flex as part of the base OS which takes preference in path)

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

52 Chapter 2. Building FRR

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact

FRR Developer’s Manual, Release latest

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The 1libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

rm -f /usr/bin/flex

2.10.3 Get FRR, compile it and install it (from Git)

This assumes you want to build and install FRR from source and not using any packages

Add frr group and user

pw groupadd frr -g 101

pw groupadd frrvty -g 102

pw adduser frr -g 101 -u 101 -G 102 -c "FRR suite" \
-d /usr/local/etc/frr -s /usr/sbin/nologin

(You may prefer different options on configure statement. These are just an example)

git clone https://github.com/frrouting/frr.git frr

cd frr

./bootstrap.sh

export MAKE=gmake

export LDFLAGS="-L/usr/local/lib"

export CPPFLAGS="-I/usr/local/include"

./configure \
--sysconfdir=/usr/local/etc/frr \
--enable-pkgsrcrcdir=/usr/pkg/share/examples/rc.d \
--localstatedir=/var/run/frr \

(continues on next page)

2.10. FreeBSD 10 53

https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

--prefix=/usr/local \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion

gmake

gmake check

sudo gmake install

Create empty FRR configuration files

sudo mkdir /usr/local/etc/frr

For integrated config file:

sudo touch /usr/local/etc/frr/frr.conf

For individual config files:

Note: Integrated config is preferred to individual config.

sudo touch /usr/local/etc/frr/babeld.conf
sudo touch /usr/local/etc/frr/bfdd.conf
sudo touch /usr/local/etc/frr/bgpd.conf
sudo touch /usr/local/etc/frr/eigrpd.conf
sudo touch /usr/local/etc/frr/isisd.conf
sudo touch /usr/local/etc/frr/ldpd.conf
sudo touch /usr/local/etc/frr/nhrpd.conf
sudo touch /usr/local/etc/frr/ospf6d.conf
sudo touch /usr/local/etc/frr/ospfd.conf
sudo touch /usr/local/etc/frr/pbrd.conf
sudo touch /usr/local/etc/frr/pimd.conf
sudo touch /usr/local/etc/frr/ripd.conf
sudo touch /usr/local/etc/frr/ripngd.conf
sudo touch /usr/local/etc/frr/staticd.conf
sudo touch /usr/local/etc/frr/zebra.conf
sudo chown -R frr:frr /usr/local/etc/frr/
sudo touch /usr/local/etc/frr/vtysh.conf
sudo chown frr:frrvty /usr/local/etc/frr/vtysh.conf
sudo chmod 640 /usr/local/etc/frr/*.conf

54

Chapter 2.

Building FRR

FRR Developer’s Manual, Release latest

Enable IP & IPv6 forwarding

Add the following lines to the end of /etc/sysctl.conf:

Routing: We need to forward packets
net.inet.ip.forwarding=1
net.inet6.ip6. forwarding=1

Reboot or use sysctl to apply the same config to the running system.

2.11 FreeBSD 11

2.11.1 FreeBSD 11 restrictions:

e MPLS is not supported on FreeBSD. MPLS requires a Linux Kernel (4.5 or higher). LDP can be built, but may
have limited use without MPLS

2.11.2 Install required packages

Add packages: (Allow the install of the package management tool if this is first package install and asked)

pkg install git autoconf automake libtool gmake json-c pkgconf \
bison flex py36-pytest c-ares python3.6 py36-sphinx texinfo libunwind

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

Make sure there is no /usr/bin/flex preinstalled (and use the newly installed in /ust/local/bin): (FreeBSD frequently
provides a older flex as part of the base OS which takes preference in path)

FRR depends on the relatively new libyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

2.11. FreeBSD 11 55

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact

FRR Developer’s Manual, Release latest

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

rm -f /usr/bin/flex

2.11.3 Get FRR, compile it and install it (from Git)

This assumes you want to build and install FRR from source and not using any packages

Add frr group and user

pw groupadd frr -g 101

pw groupadd frrvty -g 102

pw adduser frr -g 101 -u 101 -G 102 -c "FRR suite" \
-d /usr/local/etc/frr -s /usr/sbin/nologin

Download Source, configure and compile it

(You may prefer different options on configure statement. These are just an example)

git clone https://github.com/frrouting/frr.git frr
cd frr
./bootstrap.sh
setenv MAKE gmake
setenv LDFLAGS -L/usr/local/lib
setenv CPPFLAGS -I/usr/local/include
In -s /usr/local/bin/sphinx-build-3.6 /usr/local/bin/sphinx-build
./configure \
--sysconfdir=/usr/local/etc/frr \
--enable-pkgsrcrcdir=/usr/pkg/share/examples/rc.d \
--localstatedir=/var/run/frr \
--prefix=/usr/local \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--enable-configfile-mask=0640 \

(continues on next page)

56 Chapter 2. Building FRR

https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

--enable-logfile-mask=0640 \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion
gmake
gmake check
sudo gmake install

Create empty FRR configuration files

sudo mkdir /usr/local/etc/frr

For integrated config file:

sudo touch /usr/local/etc/frr/frr.conf

For individual config files:

Note: Integrated config is preferred to individual config.

sudo touch /usr/local/etc/frr/babeld.conf
sudo touch /usr/local/etc/frr/bfdd.conf
sudo touch /usr/local/etc/frr/bgpd.conf
sudo touch /usr/local/etc/frr/eigrpd.conf
sudo touch /usr/local/etc/frr/isisd.conf
sudo touch /usr/local/etc/frr/ldpd.conf
sudo touch /usr/local/etc/frr/nhrpd.conf
sudo touch /usr/local/etc/frr/ospf6d.conf
sudo touch /usr/local/etc/frr/ospfd.conf
sudo touch /usr/local/etc/frr/pbrd.conf
sudo touch /usr/local/etc/frr/pimd.conf
sudo touch /usr/local/etc/frr/ripd.conf
sudo touch /usr/local/etc/frr/ripngd.conf
sudo touch /usr/local/etc/frr/staticd.conf
sudo touch /usr/local/etc/frr/zebra.conf
sudo chown -R frr:frr /usr/local/etc/frr/
sudo touch /usr/local/etc/frr/vtysh.conf
sudo chown frr:frrvty /usr/local/etc/frr/vtysh.conf
sudo chmod 640 /usr/local/etc/frr/*.conf

2.11. FreeBSD 11

57

FRR Developer’s Manual, Release latest

Enable IP & IPv6 forwarding

Add the following lines to the end of /etc/sysctl.conf:

Routing: We need to forward packets
net.inet.ip.forwarding=1
net.inet6.ip6. forwarding=1

Reboot or use sysctl to apply the same config to the running system.

2.12 FreeBSD 9

2.12.1 FreeBSD 9 restrictions:

e MPLS is not supported on FreeBSD. MPLS requires a Linux Kernel (4.5 or higher). LDP can be built, but may
have limited use without MPLS

2.12.2 Install required packages

Add packages: (Allow the install of the package management tool if this is first package install and asked)

pkg install -y git autoconf automake libtool gmake \
pkgconf texinfo json-c bison flex py36-pytest c-ares \
python3 py36-sphinx libexecinfo

Make sure there is no /usr/bin/flex preinstalled (and use the newly installed in /ust/local/bin): (FreeBSD frequently
provides a older flex as part of the base OS which takes preference in path)

rm -f /usr/bin/flex

For building with clang (instead of gcc), upgrade clang from 3.4 default to 3.6 This is needed to build FreeBSD packages
as well - for packages clang is default (Clang 3.4 as shipped with FreeBSD 9 crashes during compile)

pkg install clang36

pkg delete clang34

mv /usr/bin/clang /usr/bin/clang34

In -s /usr/local/bin/clang36 /usr/bin/clang

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

58 Chapter 2. Building FRR

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact

FRR Developer’s Manual, Release latest

Note: The 1libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

2.12.3 Get FRR, compile it and install it (from Git)

This assumes you want to build and install FRR from source and not using any packages

Add frr group and user

pw groupadd frr -g 101

pw groupadd frrvty -g 102

pw adduser frr -g 101 -u 101 -G 102 -c "FRR suite" \
-d /usr/local/etc/frr -s /usr/sbin/nologin

(You may prefer different options on configure statement. These are just an example)

git clone https://github.com/frrouting/frr.git frr
cd frr
./bootstrap.sh
export MAKE=gmake
export LDFLAGS="-L/usr/local/lib"
export CPPFLAGS="-I/usr/local/include"
./configure \
--sysconfdir=/usr/local/etc/frr \
--enable-pkgsrcrcdir=/usr/pkg/share/examples/rc.d \
--localstatedir=/var/run/frr \
--prefix=/usr/local \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--enable-configfile-mask=0640 \

(continues on next page)

2.12. FreeBSD 9 59

https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

--enable-logfile-mask=0640 \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion
gmake
gmake check
sudo gmake install

Create empty FRR configuration files

sudo mkdir /usr/local/etc/frr

For integrated config file:

sudo touch /usr/local/etc/frr/frr.conf

For individual config files:

Note: Integrated config is preferred to individual config.

sudo touch /usr/local/etc/frr/babeld.conf
sudo touch /usr/local/etc/frr/bfdd.conf
sudo touch /usr/local/etc/frr/bgpd.conf
sudo touch /usr/local/etc/frr/eigrpd.conf
sudo touch /usr/local/etc/frr/isisd.conf
sudo touch /usr/local/etc/frr/ldpd.conf
sudo touch /usr/local/etc/frr/nhrpd.conf
sudo touch /usr/local/etc/frr/ospf6d.conf
sudo touch /usr/local/etc/frr/ospfd.conf
sudo touch /usr/local/etc/frr/pbrd.conf
sudo touch /usr/local/etc/frr/pimd.conf
sudo touch /usr/local/etc/frr/ripd.conf
sudo touch /usr/local/etc/frr/ripngd.conf
sudo touch /usr/local/etc/frr/staticd.conf
sudo touch /usr/local/etc/frr/zebra.conf
sudo chown -R frr:frr /usr/local/etc/frr/
sudo touch /usr/local/etc/frr/vtysh.conf
sudo chown frr:frrvty /usr/local/etc/frr/vtysh.conf
sudo chmod 640 /usr/local/etc/frr/*.conf

60

Chapter 2.

Building FRR

FRR Developer’s Manual, Release latest

Enable IP & IPv6 forwarding

Add the following lines to the end of /etc/sysctl.conf:

Routing: We need to forward packets
net.inet.ip.forwarding=1
net.inet6.ip6. forwarding=1

Reboot or use sysctl to apply the same config to the running system.

2.13 NetBSD 6

2.13.1 NetBSD 6 restrictions:

e MPLS is not supported on NetBSD. MPLS requires a Linux Kernel (4.5 or higher). LDP can be built, but may
have limited use without MPLS

2.13.2 Install required packages

Configure Package location:

PKG_PATH="ftp://ftp.NetBSD.org/pub/pkgsrc/packages/NetBSD/ uname -m’/ uname -r /All"
export PKG_PATH

Add packages:

sudo pkg_add git autoconf automake libtool gmake openssl \
pkg-config json-c py36-test python36 py36-sphinx

Install SSL Root Certificates (for git https access):

sudo pkg_add mozilla-rootcerts
sudo touch /etc/openssl/openssl.cnf
sudo mozilla-rootcerts install

FRR depends on the relatively new libyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

2.13. NetBSD 6 61

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact

FRR Developer’s Manual, Release latest

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

2.13.3 Get FRR, compile it and install it (from Git)

Add frr groups and user

sudo groupadd -g 92 frr

sudo groupadd -g 93 frrvty

sudo useradd -g 92 -u 92 -G frrvty -c "FRR suite" \
-d /nonexistent -s /sbin/nologin frr

Download Source, configure and compile it

(You may prefer different options on configure statement. These are just an example)

git clone https://github.com/frrouting/frr.git frr
cd frr
./bootstrap.sh
MAKE=gmake
export LDFLAGS="-L/usr/pkg/lib -R/usr/pkg/lib"
export CPPFLAGS="-I/usr/pkg/include"
./configure \
--sysconfdir=/usr/pkg/etc/frr \
--enable-pkgsrcrcdir=/usr/pkg/share/examples/rc.d \
--localstatedir=/var/run/frr \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion

(continues on next page)

62 Chapter 2. Building FRR

https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

gmake
gmake check
sudo gmake install

Create empty FRR configuration files

sudo mkdir /var/log/frr

sudo mkdir /usr/pkg/etc/frr

sudo touch /usr/pkg/etc/frr/zebra.conf
sudo touch /usr/pkg/etc/frr/bgpd.conf
sudo touch /usr/pkg/etc/frr/ospfd.conf
sudo touch /usr/pkg/etc/frr/ospf6d.conf
sudo touch /usr/pkg/etc/frr/isisd.conf
sudo touch /usr/pkg/etc/frr/ripd.conf
sudo touch /usr/pkg/etc/frr/ripngd.conf
sudo touch /usr/pkg/etc/frr/pimd.conf
sudo chown -R frr:frr /usr/pkg/etc/frr
sudo touch /usr/local/etc/frr/vtysh.conf
sudo chown frr:frrvty /usr/pkg/etc/frr/*.conf
sudo chmod 640 /usr/pkg/etc/frr/*.conf

Enable IP & IPv6 forwarding

Add the following lines to the end of /etc/sysctl.conf:

Routing: We need to forward packets
net.inet.ip.forwarding=1
net.inet6.ip6. forwarding=1

Reboot or use sysctl to apply the same config to the running system

Install rc.d init files

cp pkgsrc/*.sh /etc/rc.d/
chmod 555 /etc/rc.d/*.sh

Enable FRR processes

(Enable the required processes only)

echo "zebra=YES" >> /etc/rc.conf
echo "bgpd=YES" >> /etc/rc.conf
echo "ospfd=YES" >> /etc/rc.conf
echo "ospf6d=YES" >> /etc/rc.conf
echo "isisd=YES" >> /etc/rc.conf
echo "ripngd=YES" >> /etc/rc.conf
echo "ripd=YES" >> /etc/rc.conf
echo "pimd=YES" >> /etc/rc.conf

2.13. NetBSD 6

63

FRR Developer’s Manual, Release latest

2.14 NetBSD 7

2.14.1 NetBSD 7 restrictions:

* MPLS is not supported on NetBSD. MPLS requires a Linux Kernel (4.5 or higher). LDP can be built, but may
have limited use without MPLS

2.14.2 Install required packages

sudo pkgin install git autoconf automake libtool gmake openssl \
pkg-config json-c python36 py36-test py36-sphinx

Install SSL Root Certificates (for git https access):

sudo pkgin install mozilla-rootcerts
sudo touch /etc/openssl/openssl.cnf
sudo mozilla-rootcerts install

FRR depends on the relatively new libyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The 1libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..

(continues on next page)

64 Chapter 2. Building FRR

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

make
sudo make install

2.14.3 Get FRR, compile it and install it (from Git)

Add frr groups and user

sudo groupadd -g 92 frr

sudo groupadd -g 93 frrvty

sudo useradd -g 92 -u 92 -G frrvty -c "FRR suite" \
-d /nonexistent -s /sbin/nologin frr

Download Source, configure and compile it

(You may prefer different options on configure statement. These are just an example)

git clone https://github.com/frrouting/frr.git frr
cd frr
./bootstrap.sh
MAKE=gmake
export LDFLAGS="-L/usr/pkg/lib -R/usr/pkg/lib"
export CPPFLAGS="-I/usr/pkg/include"
./configure \
--sysconfdir=/usr/pkg/etc/frr \
--enable-pkgsrcrcdir=/usr/pkg/share/examples/rc.d \
--localstatedir=/var/run/frr \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion
gmake
gmake check
sudo gmake install

Create empty FRR configuration files

sudo mkdir /usr/pkg/etc/frr

sudo touch /usr/pkg/etc/frr/zebra.conf
sudo touch /usr/pkg/etc/frr/bgpd.conf
sudo touch /usr/pkg/etc/frr/ospfd.conf
sudo touch /usr/pkg/etc/frr/ospf6d.conf
sudo touch /usr/pkg/etc/frr/isisd.conf
sudo touch /usr/pkg/etc/frr/ripd.conf

(continues on next page)

2.14. NetBSD 7 65

FRR Developer’s Manual, Release latest

(continued from previous page)

sudo touch /usr/pkg/etc/frr/ripngd.conf

sudo touch /usr/pkg/etc/frr/pimd.conf

sudo chown -R frr:frr /usr/pkg/etc/frr

sudo touch /usr/local/etc/frr/vtysh.conf

sudo chown frr:frrvty /usr/pkg/etc/frr/*.conf
sudo chmod 640 /usr/pkg/etc/frr/*.conf

Enable IP & IPv6 forwarding

Add the following lines to the end of /etc/sysctl.conf:

Routing: We need to forward packets
net.inet.ip. forwarding=1
net.inet6.ip6. forwarding=1

Reboot or use sysctl to apply the same config to the running system

Install rc.d init files

cp pkgsrc/*.sh /etc/rc.d/
chmod 555 /etc/rc.d/*.sh

Enable FRR processes

(Enable the required processes only)

echo "zebra=YES" >> /etc/rc.conf
echo "bgpd=YES" >> /etc/rc.conf
echo "ospfd=YES" >> /etc/rc.conf
echo "ospf6d=YES" >> /etc/rc.conf
echo "isisd=YES" >> /etc/rc.conf
echo "ripngd=YES" >> /etc/rc.conf
echo "ripd=YES" >> /etc/rc.conf
echo "pimd=YES" >> /etc/rc.conf

2.15 OpenBSD 6

2.15.1 Install required packages

Configure PKG_PATH

export PKG_PATH=http://ftp5.usa.openbsd.org/pub/OpenBSD/$(uname -r)/packages/$(machine -

—a)/

Add packages:

66

Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

pkg_add clang libcares python3
pkg_add git autoconf-2.69p2 automake-1.15.1 libtool bison
pkg_add gmake json-c py-test py-sphinx libexecinfo

Select Python2.7 as default (required for pytest)

In -s /usr/local/bin/python2.7 /usr/local/bin/python

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

2.15. OpenBSD 6 67

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

2.15.2 Get FRR, compile it and install it (from Git)

This assumes you want to build and install FRR from source and not using any packages

Add frr group and user

groupadd -g 525 _frr

groupadd -g 526 _frrvty

useradd -g 525 -u 525 -c "FRR suite" -G _frrvty \
-d /nonexistent -s /sbin/nologin _frr

Download Source, configure and compile it

(You may prefer different options on configure statement. These are just an example)

Warning: In openbsd the proper links for the libyang library may not have been created.

In -s /usr/lib/libyang.so.1.10.17 /usr/lib/libyang.so

Warning: openbsd since version 6.2 has clang as the default compiler so to build frr, clang must be used (the
included gcc version is very old).

git clone https://github.com/frrouting/frr.git frr

cd frr

export AUTOCONF_VERSION="2.69"

export AUTOMAKE_VERSION="1.15"

./bootstrap.sh

export LDFLAGS="-L/usr/local/lib"

export CPPFLAGS="-I/usr/local/include"

./configure \
--sysconfdir=/etc/frr \
--localstatedir=/var/frr \
--enable-multipath=64 \
--enable-user=_frr \
--enable-group=_frr \
--enable-vty-group=_frrvty \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-fpm \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion \
CC=clang

gmake

gmake check

doas gmake install

68 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

Create empty FRR configuration files

doas mkdir /var/frr

doas chown _frr:_frr /var/frr
doas chmod 755 /var/frr

doas mkdir /etc/frr

doas touch /etc/frr/zebra.conf
doas touch /etc/frr/bgpd.conf
doas touch /etc/frr/ospfd.conf
doas touch /etc/frr/ospf6d.conf
doas touch /etc/frr/isisd.conf
doas touch /etc/frr/ripd.conf
doas touch /etc/frr/ripngd.conf
doas touch /etc/frr/pimd.conf
doas touch /etc/frr/ldpd.conf
doas touch /etc/frr/nhrpd.conf
doas chown -R _frr:_frr /etc/frr
doas touch /etc/frr/vtysh.conf
doas chown -R _frr:_frrvty /etc/frr/vtysh.conf
doas chmod 750 /etc/frr

doas chmod 640 /etc/frr/*.conf

Enable IP & IPv6 forwarding

Add the following lines to the end of /etc/rc.conf:

net.inet6.ip6. forwarding=1 # 1=Permit forwarding of IPv6 packets
net.inet6.ip6.mforwarding=1 # 1=Permit forwarding of IPv6 multicast packets
net.inet6.ip6.multipath=1 # 1=Enable IPv6 multipath routing

Reboot to apply the config to the system

Enable MPLS Forwarding

To enable MPLS forwarding on a given interface, use the following command:

doas ifconfig em® mpls

Alternatively, to make MPLS forwarding persistent across reboots, add the “mpls” keyword in the hostname.* files of
the desired interfaces. Example:

cat /etc/hostname.em®
inet 10.0.1.1 255.255.255.0 mpls

2.15. OpenBSD 6 69

FRR Developer’s Manual, Release latest

Install rc.d init files

(create them in /etc/rc.d - no example are included at this time with FRR source)

Example (for zebra - store as /etc/rc.d/frr_zebra.sh)

#!/bin/sh

#

$0penBSD: frr_zebra.rc,v 1.1 2013/04/18 20:29:08 sthen Exp $
daemon="/usr/local/sbin/zebra -d"

. /etc/rc.d/rc.subr

rc_cmd $1

Enable FRR processes

(Enable the required processes only)

echo "frr_zebra=YES" >> /etc/rc.conf
echo "frr_bgpd=YES" >> /etc/rc.conf
echo "frr_ospfd=YES" >> /etc/rc.conf
echo "frr_ospf6d=YES" >> /etc/rc.conf
echo "frr_isisd=YES" >> /etc/rc.conf
echo "frr_ripngd=YES" >> /etc/rc.conf
echo "frr_ripd=YES" >> /etc/rc.conf
echo "frr_pimd=YES" >> /etc/rc.conf
echo "frr_ldpd=YES" >> /etc/rc.conf

2.16 OpenWrt

General info about OpenWrt buildsystem: link.

2.16.1 Prepare build environment

For Debian based distributions, run:

sudo apt-get install git build-essential libssl-dev libncurses5-dev \

unzip zliblg-dev subversion mercurial

For other environments, instructions can be found in the official documentation.

70

Chapter 2. Building FRR

https://openwrt.org/docs/guide-developer/build-system/start
https://openwrt.org/docs/guide-developer/build-system/install-buildsystem#examples_of_package_installations

FRR Developer’s Manual, Release latest

2.16.2 Get OpenWrt Sources (from Git)

Note: The OpenWrt build will fail if you run it as root. So take care to run it as a nonprivileged user.

Clone the OpenWrt sources and retrieve the package feeds

git clone https://github.com/openwrt/openwrt.git
cd openwrt

./scripts/feeds update -a

./scripts/feeds install -a

Configure OpenWrt for your target and select the needed FRR packages in Network -> Routing and Redirection -> frr,
exit and save

make menuconfig

Then, to compile either a complete OpenWrt image, or the FRR packages, run:

make or make package/frr/compile

It may be possible that on first build make package/frr/compile not to work and it may be needed to run a make
for the entire build environment. Add V=s to get more debugging output.

More information about OpenWrt buildsystem can be found here.

2.16.3 Work with sources

To update to a newer version, or change other options, you need to edit the feeds/packages/frr/Makefile.

More information about working with patches in OpenWrt buildsystem can be found here.

2.16.4 Usage

Edit /usr/sbin/frr.init and add/remove the daemons name in section DAEMONS= or don’t install unneeded pack-
ages For example: zebra bgpd 1dpd isisd nhrpd ospfd ospf6d pimd ripd ripngd

Enable the service

e service frr enable

Start the service

e service frr start

2.16. OpenWrt 71

https://openwrt.org/docs/guide-developer/build-system/use-buildsystem
https://openwrt.org/docs/guide-developer/build-system/use-patches-with-buildsystem

FRR Developer’s Manual, Release latest

2.17 Ubuntu 14.04 LTS

This document describes installation from source. If you want to build a deb, see Packaging Debian.

2.17.1 Installing Dependencies

apt-get update

apt-get install \
git autoconf automake libtool make libreadline-dev texinfo \
pkg-config libpam®@g-dev libjson-c-dev bison flex python3-pytest \
libc-ares-dev python3-dev python3-sphinx install-info build-essential \
libsnmp-dev perl libcap-dev libelf-dev

FRR depends on the relatively new libyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

72 Chapter 2. Building FRR

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

2.17.2 Building & Installing FRR

Add FRR user and groups

sudo groupadd -r -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo adduser --system --ingroup frr --home /var/run/frr/ \
--gecos "FRR suite" --shell /sbin/nologin frr

sudo usermod -a -G frrvty frr

Compile

Clone the FRR git repo and use the included configure script to configure FRR’s build time options to your liking.

The full option listing can be obtained by running . /configure -h. The options shown below are examples.

git clone https://github.com/frrouting/frr.git frr

cd frr

./bootstrap.sh

./configure \
--prefix=/usr \
--includedir=\${prefix}/include \
--bindir=\${prefix}/bin \
--sbindir=\${prefix}/lib/frr \
--libdir=\${prefix}/lib/frr \
--libexecdir=\${prefix}/lib/frr \
--localstatedir=/var/run/frr \
--sysconfdir=/etc/frr \
--with-moduledir=\${prefix}/lib/frr/modules \
--with-libyang-pluginsdir=\${prefix}/lib/frr/libyang_plugins \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-snmp=agentx \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion

make

sudo make install

Install FRR configuration files

sudo install -m 775 -o frr -g frr -d /var/log/frr

sudo install -m 775 -o frr -g frrvty -d /etc/frr

sudo install -m 640 -o frr -g frrvty tools/etc/frr/vtysh.conf /etc/frr/vtysh.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/frr.conf /etc/frr/frr.conf

sudo install -m 640 -o frr -g frr tools/etc/frr/daemons.conf /etc/frr/daemons.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/daemons /etc/frr/daemons

2.17. Ubuntu 14.04 LTS

73

FRR Developer’s Manual, Release latest

Tweak sysctls

Some sysctls need to be changed in order to enable IPv4/IPv6 forwarding and MPLS (if supported by your platform).
If your platform does not support MPLS, skip the MPLS related configuration in this section.

Edit /etc/sysctl.conf and uncomment the following values (ignore the other settings):

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

Uncomment the next line to enable packet forwarding for IPv6

Enabling this option disables Stateless Address Autoconfiguration
based on Router Advertisements for this host
net.ipv6.conf.all.forwarding=1

Reboot or use sysctl -p to apply the same config to the running system.

Add MPLS kernel modules

Warning: MPLS is not supported on Ubuntu 14.04 with the default kernel. MPLS requires kernel 4.5 or higher.
LDPD can be built, but may have limited use without MPLS. For an updated Ubuntu Kernel, see http://kernel.
ubuntu.com/~kernel-ppa/mainline/

Ubuntu 18.04 ships with kernel 4.15. MPLS modules are present by default. To enable, add the following lines to
/etc/modules-load.d/modules. conf:

Load MPLS Kernel Modules
mpls_router
mpls_iptunnel

And load the kernel modules on the running system:

sudo modprobe mpls-router mpls-iptunnel

Enable MPLS Forwarding

Edit /etc/sysctl.conf and the following lines. Make sure to add a line equal to net .mpls.conf.eth®.input for
each interface used with MPLS.

Enable MPLS Label processing on all interfaces
net.mpls.conf.eth®.input=1
net.mpls.conf.ethl.input=1
net.mpls.conf.eth2.input=1
net.mpls.platform_labels=100000

74 Chapter 2. Building FRR

http://kernel.ubuntu.com/~kernel-ppa/mainline/
http://kernel.ubuntu.com/~kernel-ppa/mainline/

FRR Developer’s Manual, Release latest

Install the init.d service

sudo install -m 755 tools/frr /etc/init.d/frr

Enable daemons

Open /etc/frr/daemons with your text editor of choice. Look for the section with watchfrr_enable=... and
zebra=. .. etc. Enable the daemons as required by changing the value to yes.

Start the init.d service

/etc/init.d/frr start

Use /etc/init.d/frr status to check its status.
2.18 Ubuntu 16.04 LTS
This document describes installation from source. If you want to build a deb, see Packaging Debian.

2.18.1 Installing Dependencies

apt-get update

apt-get install \
git autoconf automake libtool make libreadline-dev texinfo \
pkg-config libpam@g-dev libjson-c-dev bison flex python3-pytest \
libc-ares-dev python3-dev python-ipaddress python3-sphinx \
install-info build-essential libsnmp-dev perl libcap-dev \
libelf-dev

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The 1ibyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

2.18. Ubuntu 16.04 LTS 75

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact

FRR Developer’s Manual, Release latest

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

2.18.2 Building & Installing FRR

Add FRR user and groups

sudo groupadd -r -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo adduser --system --ingroup frr --home /var/run/frr/ \
--gecos "FRR suite" --shell /sbin/nologin frr

sudo usermod -a -G frrvty frr

Compile

Clone the FRR git repo and use the included configure script to configure FRR’s build time options to your liking.
The full option listing can be obtained by running . /configure -h. The options shown below are examples.

git clone https://github.com/frrouting/frr.git frr

cd frr

./bootstrap.sh

./configure \
--prefix=/usr \
--includedir=\${prefix}/include \
--bindir=\${prefix}/bin \
--sbindir=\${prefix}/lib/frr \
--libdir=\${prefix}/lib/frr \
--libexecdir=\${prefix}/lib/frr \
--localstatedir=/var/run/frr \
--sysconfdir=/etc/frr \
--with-moduledir=\${prefix}/1lib/frr/modules \
--with-libyang-pluginsdir=\${prefix}/lib/frr/libyang_plugins \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-snmp=agentx \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \

(continues on next page)

76 Chapter 2. Building FRR

https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

--enable-vty-group=frrvty \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion
make
sudo make install

Install FRR configuration files

sudo install -m 775 -o frr -g frr -d /var/log/frr

sudo install -m 775 -o frr -g frrvty -d /etc/frr

sudo install -m 640 -o frr -g frrvty tools/etc/frr/vtysh.conf /etc/frr/vtysh.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/frr.conf /etc/frr/frr.conf

sudo install -m 640 -o frr -g frr tools/etc/frr/daemons.conf /etc/frr/daemons.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/daemons /etc/frr/daemons

Tweak sysctls

Some sysctls need to be changed in order to enable IPv4/IPv6 forwarding and MPLS (if supported by your platform).
If your platform does not support MPLS, skip the MPLS related configuration in this section.

Edit /etc/sysctl.conf and uncomment the following values (ignore the other settings):

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

Uncomment the next line to enable packet forwarding for IPv6

Enabling this option disables Stateless Address Autoconfiguration
based on Router Advertisements for this host
net.ipv6.conf.all.forwarding=1

Reboot or use sysctl -p to apply the same config to the running system.

Add MPLS kernel modules

Warning: MPLS is not supported on Ubuntu 16.04 with the default kernel. MPLS requires kernel 4.5 or higher.
LDPD can be built, but may have limited use without MPLS. For an updated Ubuntu Kernel, see http://kernel.
ubuntu.com/~kernel-ppa/mainline/

Ubuntu 18.04 ships with kernel 4.15. MPLS modules are present by default. To enable, add the following lines to
/etc/modules-load.d/modules. conf:

Load MPLS Kernel Modules
mpls_router
mpls_iptunnel

And load the kernel modules on the running system:

2.18. Ubuntu 16.04 LTS 77

http://kernel.ubuntu.com/~kernel-ppa/mainline/
http://kernel.ubuntu.com/~kernel-ppa/mainline/

FRR Developer’s Manual, Release latest

sudo modprobe mpls-router mpls-iptunnel

Enable MPLS Forwarding

Edit /etc/sysctl.conf and the following lines. Make sure to add a line equal to net.mpls.conf.eth®.input for
each interface used with MPLS.

Enable MPLS Label processing on all interfaces
net.mpls.conf.eth®.input=1
net.mpls.conf.ethl.input=1
net.mpls.conf.eth2.input=1
net.mpls.platform_labels=100000

Install service files

sudo install -m 644 tools/frr.service /etc/systemd/system/frr.service
sudo systemctl enable frr

Enable daemons

Open /etc/frr/daemons with your text editor of choice. Look for the section with watchfrr_enable=... and
zebra=. .. etc. Enable the daemons as required by changing the value to yes.
Start FRR

systemctl start frr

2.19 Ubuntu 18.04 LTS

This document describes installation from source. If you want to build a deb, see Packaging Debian.

2.19.1 Installing Dependencies

sudo apt update

sudo apt-get install \
git autoconf automake libtool make libreadline-dev texinfo \
pkg-config libpam@g-dev libjson-c-dev bison flex \
libc-ares-dev python3-dev python3-sphinx \
install-info build-essential libsnmp-dev perl libcap-dev \
libelf-dev libunwind-dev

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

78 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The 1libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

Protobuf

sudo apt-get install protobuf-c-compiler libprotobuf-c-dev

ZeroMQ

sudo apt-get install libzmg5 libzmq3-dev

2.19. Ubuntu 18.04 LTS 79

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

2.19.2 Building & Installing FRR

Add FRR user and groups

sudo groupadd -r -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo adduser --system --ingroup frr --home /var/run/frr/ \
--gecos "FRR suite" --shell /sbin/nologin frr

sudo usermod -a -G frrvty frr

Compile

Clone the FRR git repo and use the included configure script to configure FRR’s build time options to your liking.
The full option listing can be obtained by running . /configure -h. The options shown below are examples.

git clone https://github.com/frrouting/frr.git frr

cd frr

./bootstrap.sh

./configure \
--prefix=/usr \
--includedir=\${prefix}/include \
--bindir=\${prefix}/bin \
--sbindir=\${prefix}/lib/frr \
--libdir=\${prefix}/lib/frr \
--libexecdir=\${prefix}/lib/frr \
--localstatedir=/var/run/frr \
--sysconfdir=/etc/frr \
--with-moduledir=\${prefix}/lib/frr/modules \
--with-libyang-pluginsdir=\${prefix}/lib/frr/libyang_plugins \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-snmp=agentx \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion

make

sudo make install

Install FRR configuration files

sudo install -m 775 -o frr -g frr -d /var/log/frr

sudo install -m 775 -o frr -g frrvty -d /etc/frr

sudo install -m 640 -o frr -g frrvty tools/etc/frr/vtysh.conf /etc/frr/vtysh.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/frr.conf /etc/frr/frr.conf

sudo install -m 640 -o frr -g frr tools/etc/frr/daemons.conf /etc/frr/daemons.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/daemons /etc/frr/daemons

80 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

Tweak sysctls

Some sysctls need to be changed in order to enable IPv4/IPv6 forwarding and MPLS (if supported by your platform).
If your platform does not support MPLS, skip the MPLS related configuration in this section.

Edit /etc/sysctl.conf and uncomment the following values (ignore the other settings):

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

Uncomment the next line to enable packet forwarding for IPv6

Enabling this option disables Stateless Address Autoconfiguration
based on Router Advertisements for this host
net.ipv6.conf.all.forwarding=1

Reboot or use sysctl -p to apply the same config to the running system.

Add MPLS kernel modules

Ubuntu 18.04 ships with kernel 4.15. MPLS modules are present by default. To enable, add the following lines to
/etc/modules-load.d/modules.conf:

Load MPLS Kernel Modules
mpls_router
mpls_iptunnel

And load the kernel modules on the running system:

sudo modprobe mpls-router mpls-iptunnel

If the above command returns an error, you may need to install the appropriate or latest linux-modules-extra-<kernel-
version>-generic package. For example apt-get install linux-modules-extra- uname -r’ -generic

Enable MPLS Forwarding

Edit /etc/sysctl.conf and the following lines. Make sure to add a line equal to net .mpls.conf.eth®.input for
each interface used with MPLS.

Enable MPLS Label processing on all interfaces
net.mpls.conf.eth®.input=1
net.mpls.conf.ethl.input=1
net.mpls.conf.eth2.input=1
net.mpls.platform_labels=100000

2.19. Ubuntu 18.04 LTS 81

FRR Developer’s Manual, Release latest

Install service files

sudo install -m 644 tools/frr.service /etc/systemd/system/frr.service
sudo systemctl enable frr

Enable daemons

Open /etc/frr/daemons with your text editor of choice. Look for the section with watchfrr_enable=... and
zebra=. .. etc. Enable the daemons as required by changing the value to yes.

Start FRR

systemctl start frr

2.20 Ubuntu 20.04 LTS

This document describes installation from source. If you want to build a deb, see Packaging Debian.

2.20.1 Installing Dependencies

sudo apt update

sudo apt-get install \
git autoconf automake libtool make libreadline-dev texinfo \
pkg-config libpam®g-dev libjson-c-dev bison flex \
libc-ares-dev python3-dev python3-sphinx \
install-info build-essential libsnmp-dev perl \
libcap-dev python2 libelf-dev libunwind-dev

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

Note that Ubuntu 20 no longer installs python 2.x, so it must be installed explicitly. Ensure that your system has a
symlink named /usr/bin/python pointing at /usr/bin/python3.

In addition, pip for python2 must be installed if you wish to run the FRR topotests. That version of pip is not available
from the ubuntu apt repositories; in order to install it:

curl https://bootstrap.pypa.io/pip/2.7/get-pip.py --output get-pip.py
sudo python2 ./get-pip.py

And verify the installation
pip2 --version

FRR depends on the relatively new 1ibyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install

82 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The 1libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang
git checkout v2.0.0
mkdir build; cd build
cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \
-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

Protobuf

sudo apt-get install protobuf-c-compiler libprotobuf-c-dev

ZeroMQ

sudo apt-get install libzmg5 libzmq3-dev

2.20.2 Building & Installing FRR

Add FRR user and groups

sudo groupadd -r -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo adduser --system --ingroup frr --home /var/run/frr/ \
--gecos "FRR suite" --shell /sbin/nologin frr

sudo usermod -a -G frrvty frr

2.20. Ubuntu 20.04 LTS 83

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

Compile

Clone the FRR git repo and use the included configure script to configure FRR’s build time options to your liking.
The full option listing can be obtained by running . /configure -h. The options shown below are examples.

git clone https://github.com/frrouting/frr.git frr

cd frr

./bootstrap.sh

./configure \
--prefix=/usr \
--includedir=\${prefix}/include \
--bindir=\${prefix}/bin \
--sbindir=\${prefix}/lib/frr \
--libdir=\${prefix}/lib/frr \
--libexecdir=\${prefix}/1lib/frr \
--localstatedir=/var/run/frr \
--sysconfdir=/etc/frr \
--with-moduledir=\${prefix}/lib/frr/modules \
--with-libyang-pluginsdir=\${prefix}/lib/frr/libyang_plugins \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-snmp=agentx \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion

make

sudo make install

Install FRR configuration files

sudo install -m 775 -o frr -g frr -d /var/log/frr

sudo install -m 775 -o frr -g frrvty -d /etc/frr

sudo install -m 640 -o frr -g frrvty tools/etc/frr/vtysh.conf /etc/frr/vtysh.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/frr.conf /etc/frr/frr.conf

sudo install -m 640 -o frr -g frr tools/etc/frr/daemons.conf /etc/frr/daemons.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/daemons /etc/frr/daemons

Tweak sysctls

Some sysctls need to be changed in order to enable IPv4/IPv6 forwarding and MPLS (if supported by your platform).
If your platform does not support MPLS, skip the MPLS related configuration in this section.

Edit /etc/sysctl.conf and uncomment the following values (ignore the other settings):

Uncomment the next line to enable packet forwarding for IPv4
net.ipv4.ip_forward=1

Uncomment the next line to enable packet forwarding for IPv6

(continues on next page)

84 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

(continued from previous page)

Enabling this option disables Stateless Address Autoconfiguration
based on Router Advertisements for this host
net.ipv6.conf.all.forwarding=1

Reboot or use sysctl -p to apply the same config to the running system.

Add MPLS kernel modules

Ubuntu 20.04 ships with kernel 5.4; MPLS modules are present by default. To enable, add the following lines to
/etc/modules-load.d/modules.conf:

Load MPLS Kernel Modules
mpls_router
mpls_iptunnel

And load the kernel modules on the running system:

sudo modprobe mpls-router mpls-iptunnel

If the above command returns an error, you may need to install the appropriate or latest linux-modules-extra-<kernel-
version>-generic package. For example apt-get install linux-modules-extra- uname -r -generic

Enable MPLS Forwarding

Edit /etc/sysctl.conf and the following lines. Make sure to add a line equal to net.mpls.conf.eth®.input for
each interface used with MPLS.

Enable MPLS Label processing on all interfaces
net.mpls.conf.eth®.input=1
net.mpls.conf.ethl.input=1
net.mpls.conf.eth2.input=1
net.mpls.platform_labels=100000

Install service files

sudo install -m 644 tools/frr.service /etc/systemd/system/frr.service
sudo systemctl enable frr

Enable daemons

Open /etc/frr/daemons with your text editor of choice. Look for the section with watchfrr_enable=... and
zebra=. .. etc. Enable the daemons as required by changing the value to yes.

2.20. Ubuntu 20.04 LTS 85

FRR Developer’s Manual, Release latest

Start FRR

systemctl start frr

2.21 Arch Linux

2.21.1 Installing Dependencies

sudo pacman -Syu
sudo pacman -S \
git autoconf automake libtool make cmake pcre readline texinfo \
pkg-config pam json-c bison flex python-pytest \
c-ares python python2-ipaddress python-sphinx \
net-snmp perl libcap libelf libunwind

Note: The libunwind library is optional but highly recommended, as it improves backtraces printed for crashes and
debugging. However, if it is not available for some reason, it can simply be left out without any loss of functionality.

FRR depends on the relatively new libyang library to provide YANG/NETCONTF support. Unfortunately, most dis-
tributions do not yet offer a 1ibyang package from their repositories. Therefore we offer two options to install this
library.

Option 1: Binary Install
The FRR project builds some binary 1ibyang packages.
RPM packages are at our RPM repository.

DEB packages are available as CI artifacts here.

Warning: libyang version 2.0.0 or newer is required to build FRR.

Note: The libyang development packages need to be installed in addition to the libyang core package in order to
build FRR successfully. Make sure to download and install those from the link above alongside the binary packages.

Depending on your platform, you may also need to install the PCRE development package. Typically this is
libpcre2-dev or pcre2-devel.

Option 2: Source Install

Note: Ensure that the libyang build requirements are met before continuing. Usually this entails installing cmake and
libpcre2-dev or pcre2-devel.

git clone https://github.com/CESNET/libyang.git
cd libyang

git checkout v2.0.0

mkdir build; cd build

(continues on next page)

86 Chapter 2. Building FRR

https://rpm.frrouting.org
https://ci1.netdef.org/browse/LIBYANG-LIBYANGV2/latestSuccessful/artifact
https://github.com/CESNET/libyang/#build-requirements

FRR Developer’s Manual, Release latest

(continued from previous page)

cmake -D CMAKE_INSTALL_PREFIX:PATH=/usr \

-D CMAKE_BUILD_TYPE:String="Release" ..
make
sudo make install

Protobuf

sudo pacman -S protobuf-c

ZeroMQ

sudo pacman -S zeromq

2.21.2 Building & Installing FRR

Add FRR user and groups

sudo groupadd -r -g 92 frr

sudo groupadd -r -g 85 frrvty

sudo useradd --system -g frr --home-dir /var/run/frr/ \
-c "FRR suite" --shell /sbin/nologin frr

sudo usermod -a -G frrvty frr

Compile

Clone the FRR git repo and use the included configure script to configure FRR’s build time options to your liking.
The full option listing can be obtained by running . /configure -h. The options shown below are examples.

git clone https://github.com/frrouting/frr.git frr

cd frr

./bootstrap.sh

./configure \
--prefix=/usr \
--includedir=\${prefix}/include \
--bindir=\${prefix}/bin \
--sbindir=\${prefix}/lib/frr \
--libdir=\${prefix}/lib/frr \
--libexecdir=\${prefix}/lib/frr \
--localstatedir=/var/run/frr \
--sysconfdir=/etc/frr \
--with-moduledir=\${prefix}/lib/frr/modules \
--with-libyang-pluginsdir=\${prefix}/lib/frr/libyang_plugins \
--enable-configfile-mask=0640 \
--enable-logfile-mask=0640 \
--enable-snmp=agentx \
--enable-multipath=64 \

(continues on next page)

2.21. Arch Linux 87

FRR Developer’s Manual, Release latest

(continued from previous page)

--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--with-pkg-git-version \
--with-pkg-extra-version=-MyOwnFRRVersion
make
sudo make install

Install FRR configuration files

sudo install -m 775 -o frr -g frr -d /var/log/frr

sudo install -m 775 -o frr -g frrvty -d /etc/frr

sudo install -m 640 -o frr -g frrvty tools/etc/frr/vtysh.conf /etc/frr/vtysh.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/frr.conf /etc/frr/frr.conf

sudo install -m 640 -o frr -g frr tools/etc/frr/daemons.conf /etc/frr/daemons.conf
sudo install -m 640 -o frr -g frr tools/etc/frr/daemons /etc/frr/daemons

Tweak sysctls

Some sysctls need to be changed in order to enable IPv4/IPv6 forwarding and MPLS (if supported by your platform).
If your platform does not support MPLS, skip the MPLS related configuration in this section.

Edit /etc/sysctl. conf [Create the file if it doesn’t exist] and append the following values (ignore the other settings):

Enable packet forwarding for IPv4
net.ipv4.ip_forward=1

Enable packet forwarding for IPv6
net.ipv6.conf.all.forwarding=1

Reboot or use sysctl -p to apply the same config to the running system.

Add MPLS kernel modules

To enable, add the following lines to /etc/modules-load.d/modules. conf:

Load MPLS Kernel Modules
mpls_router
mpls_iptunnel

And load the kernel modules on the running system:

sudo modprobe mpls-router mpls-iptunnel

88 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

Enable MPLS Forwarding

Edit /etc/sysctl.conf and the following lines. Make sure to add a line equal to net.mpls.conf.eth®.input for
each interface used with MPLS.

Enable MPLS Label processing on all interfaces
net.mpls.conf.eth®.input=1
net.mpls.conf.ethl.input=1
net.mpls.conf.eth2.input=1
net.mpls.platform_labels=100000

Install service files

sudo install -m 644 tools/frr.service /etc/systemd/system/frr.service
sudo systemctl enable frr

Start FRR

systemctl start frr

2.22 Docker

This page covers how to build FRR Docker images.

2.22.1 Images
FRR has Docker build infrastructure to produce Docker images containing source-built FRR on the following base
platforms:

* Alpine

* Centos 7

 Centos 8

The following platform images are used to support Travis CI and can also be used to reproduce topotest failures when
the docker host is Ubuntu (tested on 18.04 and 20.04):

e Ubuntu 18.04
¢ Ubuntu 20.04

The following platform images may also be built, but these simply install a binary package from an existing repository
and do not perform source builds:

¢ Debian 10
Some of these are available on DockerHub.

There is no guarantee on what is and is not available from DockerHub at time of writing.

2.22. Docker 89

https://hub.docker.com/repository/docker/frrouting/frr/tags?page=1

FRR Developer’s Manual, Release latest

2.22.2 Scripts

Some platforms contain an included build script that may be run from the host. This will set appropriate packaging
environment variables and clean up intermediate build images.

These scripts serve another purpose. They allow building platform packages without needing the platform. For exam-
ple, the Centos 8 docker image can also be leveraged to build Centos 8 RPMs that can then be used separately from
Docker.

If you are only interested in the Docker images and don’t want the cleanup functionality of the scripts you can ignore
them and perform a normal Docker build. If you want to build multi-arch docker images this is required as the scripts
do not support using Buildkit for multi-arch builds.

Building Alpine Image

Script:

./docker/alpine/build.sh

No script:

docker build -f docker/alpine/Dockerfile .

No script, multi-arch (ex. amd64, arm64, armv7):

docker buildx build --platform linux/amd64,linux/arm64,linux/arm/v7 -f docker/alpine/
—Dockerfile -t frr:latest .

Building Debian Image

cd docker/debian
docker build .

Multi-arch (ex. amd64, arm64, armv7):

cd docker/debian
docker buildx build --platform linux/amd64,linux/arm64,linux/arm/v7 -t frr-debian:latest.

o

Building Centos 7 Image

Script:

./docker/centos-7/build.sh

No script:

docker build -f docker/centos-7/Dockerfile .

No script, multi-arch (ex. amd64, arm64):

docker buildx build --platform linux/amd64,linux/armé64 -f docker/centos-7/Dockerfile -t.
—frr-centos7:latest .

90 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

Building Centos 8 Image

Script:

./docker/centos-8/build.sh

No script:

docker build -f docker/centos-8/Dockerfile .

No script, multi-arch (ex. amd64, arm64):

docker buildx build --platform linux/amd64,linux/arm64 -f docker/centos-8/Dockerfile -t.
—frr-centos8:latest .

Building ubi 8 Image

Script:

./docker/ubi-8/build.sh

Script with params, an example could be this (all that info will go to docker label)

./docker/ubi-8/build.sh frr:ubi-8-my-test "$(git rev-parse --short=10 HEAD)" my_release.
—my_name my_vendor

No script:

docker build -f docker/ubi-8/Dockerfile .

No script, multi-arch (ex. amd64, arm64):

docker buildx build --platform linux/amd64,linux/arm64 -f docker/ubi-8/Dockerfile -t frr-
—ubi-8:latest .

Building Ubuntu 18.04 Image

Build image (from project root directory):

docker build -t frr-ubuntul8:latest -f docker/ubuntul8-ci/Dockerfile .

Start the container:

docker run -d --privileged --name frr-ubuntul8 --mount type=bind,source=/lib/modules,
—.target=/1lib/modules frr-ubuntul8:latest

Running a topotest (when the docker host is Ubuntu):

docker exec frr-ubuntul8 bash -c 'cd ~/frr/tests/topotests/ospf-topol ; sudo pytest test_
—ospf_topol.py'

Starting an interactive bash session:

2.22. Docker 91

FRR Developer’s Manual, Release latest

docker exec -it frr-ubuntul8 bash

Stopping an removing a container:

docker stop frr-ubuntul8 ; docker rm frr-ubuntul8

Removing the built image:

docker rmi frr-ubuntul8:latest

Building Ubuntu 20.04 Image

Build image (from project root directory):

docker build -t frr-ubuntu20:latest -f docker/ubuntu20-ci/Dockerfile .

Start the container:

docker run -d --privileged --name frr-ubuntu2® --mount type=bind,source=/lib/modules,
—.target=/1lib/modules frr-ubuntu20:latest

Running a topotest (when the docker host is Ubuntu):

docker exec frr-ubuntu2® bash -c 'cd ~/frr/tests/topotests/ospf-topol ; sudo pytest test_
—ospf_topol.py'

Starting an interactive bash session:

docker exec -it frr-ubuntu20 bash

Stopping an removing a container:

docker stop frr-ubuntu2® ; docker rm frr-ubuntu20

Removing the built image:

docker rmi frr-ubuntu20:latest

2.23 Cross-Compiling

FRR is capable of being cross-compiled to a number of different architectures. With an adequate toolchain this process
is fairly straightforward, though one must exercise caution to validate this toolchain’s correctness before attempting to
compile FRR or its dependencies; small oversights in the construction of the build tools may lead to problems which
quickly become difficult to diagnose.

92 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

2.23.1 Toolchain Preliminary

The first step to cross-compiling any program is to identify the system which the program (FRR) will run on. From
here on this will be called the “host” machine, following autotools’ convention, while the machine building FRR will
be called the “build” machine. The toolchain will of course be installed onto the build machine and be leveraged to
build FRR for the host machine to run.

Note: The build machine used while writing this guide was x86_64-pc-linux-gnu and the target machine was
arm-linux-gnueabihf (a Raspberry Pi 3B+). Replace this with your targeted tuple below if you plan on running the
commands from this guide:

export HOST_ARCH=""arm-linux-gnueabihf”

For your given target, the build system’s OS may have some support for building cross compilers natively, or may even
offer binary toolchains built upstream for the target architecture. Check your package manager or OS documentation
before committing to building a toolchain from scratch.

This guide will not detail zow to build a cross-compiling toolchain but will instead assume one already exists and is
installed on the build system. The methods for building the toolchain itself may differ between operating systems so
consult the OS documentation for any particulars regarding cross-compilers. The OSDev wiki has a pleasant tutorial
on cross-compiling in the context of operating system development which bootstraps from only the native GCC and
binutils on the build machine. This may be useful if the build machine’s OS does not offer existing tools to build a
cross-compiler targeting the host.

This guide will also not demonstrate how to build all of FRR’s dependencies for the target architecture. Instead,
general instructions for using a cross-compiling toolchain to compile packages using CMake, Autotools, and Makefiles
are provided; these three cases apply to almost all FRR dependencies.

Warning: Ensure the versions and implementations of the C standard library (glibc or what have you) match on
the host and the build toolchain. 1dd --version will help you here. Upgrade one or the other if the they do not
match.

2.23.2 Testing the Toolchain

Before any cross-compilation begins it would be prudent to test the new toolchain by writing, compiling and linking a
simple program.

A small program

cat > nothing.c <<EOF
int main() { return 0; }
EOF

Build and link with the cross-compiler
HOST_ARCH}-gcc -o nothing nothing.c

Inspect the resulting binary, results may vary
file ./nothing

nothing: ELF 32-bit LSB pie executable, ARM, EABI5 version 1 (SYSV),

(continues on next page)

2.23. Cross-Compiling 93

https://wiki.osdev.org/GCC_Cross-Compiler

FRR Developer’s Manual, Release latest

(continued from previous page)

dynamically linked, interpreter /lib/ld-linux-armhf.so.3,
for GNU/Linux 3.2.0, not stripped

If this produced no errors then the installed toolchain is probably ready to start compiling the build dependencies and
eventually FRR itself. There still may be lurking issues but fundamentally the toolchain can produce binaries and that’s
good enough to start working with it.

Warning: If any errors occurred during the previous functional test please look back and address them before
moving on; this indicates your cross-compiling toolchain is not in a position to build FRR or its dependencies.
Even if everything was fine, keep in mind that many errors from here on may still be related to your toolchain (e.g.
libstdc++.s0 or other components) and this small test is not a guarantee of complete toolchain coherence.

2.23.3 Cross-compiling Dependencies

When compiling FRR it is necessary to compile some of its dependencies alongside it on the build machine. This is
so symbols from the shared libraries (which will be loaded at run-time on the host machine) can be linked to the FRR
binaries at compile time; additionally, headers for these libraries are needed during the compile stage for a successful
build.

Sysroot Overview

All build dependencies should be installed into a “root” directory on the build computer, hereafter called the “sysroot”.
This directory will be prefixed to paths while searching for requisite libraries and headers during the build process.
Often this may be set via a --prefix flag when building the dependent packages, meaning a make install will
copy compiled libraries into (e.g.) /usr/${HOST_ARCH}/usr.

If the toolchain was built on the build machine then there is likely already a sysroot where those tools and standard
libraries were installed; it may be helpful to use that directory as the sysroot for this build as well.

Basic Workflow
Before compiling or building any dependencies, make note of which daemons are being targeted and which libraries
will be needed. Not all dependencies are necessary if only building with a subset of the daemons.

The following workflow will compile and install any libraries which can be built with Autotools. The resultant library
will be installed into the sysroot /usr/${HOST_ARCH}.

./configure \
CC=${HOST_ARCH}-gcc \
CXX=${HOST_ARCH}-g++ \
--build=${HOST_ARCH} \
--prefix=/usr/${HOST_ARCH

make

make install

Some libraries like json-c and 1libyang are packaged with CMake and can be built and installed generally like:

mkdir build
cd build
CC=${HOST_ARCH}-gcc \

(continues on next page)

94 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

(continued from previous page)

CXX=${HOST_ARCH}-g++ \
cmake \
-DCMAKE_INSTALL_PREFIX=/usr/${HOST_ARCH} \

make
make install

For programs with only a Makefile (e.g. 1ibcap) the process may look still a little different:

CC=${HOST_ARCH}-gcc make
make install DESTDIR=/usr/${HOST_ARCH

These three workflows should handle the bulk of building and installing the build-time dependencies for FRR. Ver-
ify that the installed files are being placed correctly into the sysroot and were actually built using the cross-compile
toolchain, not by the native toolchain by accident.

Dependency Notes

There are a lot of things that can go wrong during a cross-compilation. Some of the more common errors and a few
special considerations are collected below for reference.

libyang

-DENABLE_LYD_PRIV=0N should be provided during the CMake step.

Ensure also that the version of 1ibyang being installed corresponds to the version required by the targeted FRR version.

gRPC

This piece is requisite only if the --enable-grpc flag will be passed later on to FRR. One may get burned when
compiling gRPC if the protoc version on the build machine differs from the version of protoc being linked to during
a gRPC build. The error messages from this defect look like:

gens/src/proto/grpc/channelz/channelz.pb.h: In member function ‘void.
—.grpc::channelz::vl::ServerRef::set_name(const char*, size_t)’:
gens/src/proto/grpc/channelz/channelz.pb.h:9127:64: error: ‘EmptyDefault’ is not a.
—member of ‘google::protobuf::internal::ArenaStringPtr’

9127 | name_.Set(: :PROTOBUF_NAMESPACE_ID::internal::ArenaStringPtr: :EmptyDefault{},.
—::std::string(

This happens because protocol buffer code generation uses protoc to create classes with different getters and setters
corresponding to the protobuf data defined by the source tree’s . proto files. Clearly the cross-compiled protoc cannot
be used for this code generation because that binary is built for a different CPU.

The solution is to install matching versions of native and cross-compiled protocol buffers; this way the native binary
will generate code and the cross-compiled library will be linked to by gRPC and these versions will not disagree.

The -latomic linker flag may also be necessary here if using libstdc++ since GCC’s C++11 implementation makes
library calls in certain cases for <atomic> so -latomic cannot be assumed.

2.23. Cross-Compiling 95

FRR Developer’s Manual, Release latest

2.23.4 Cross-compiling FRR ltself

With all the necessary libraries cross-compiled and installed into the sysroot, the last thing to actually build is FRR
itself:

Clone and bootstrap the build

git clone 'https://github.com/FRRouting/frr.git'
(e.g.) git checkout stable/7.5

./bootstrap.sh

Build clippy using the native toolchain
mkdir build-clippy

cd build-clippy

../configure --enable-clippy-only

make clippy-only

cd ..

Next, configure FRR and use the clippy we just built
./configure \
CC=${HOST_ARCH}-gcc \
CXX=${HOST_ARCH}-g++ \
--host=${HOST_ARCH} \
--with-sysroot=/usr/${HOST_ARCH} \
--with-clippy=./build-clippy/lib/clippy \
--sysconfdir=/etc/frr \
--sbindir="\${prefix}/lib/frr" \
--localstatedir=/var/run/frr \
--prefix=/usr \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--disable-doc \
--enable-grpc

Send it
make

2.23.5 Installation to Host Machine

If no errors were observed during the previous steps it is safe to make install FRR into its own directory.

Install FRR its own "sysroot"
make install DESTDIR=/some/path/to/sysroot

After running the above command, FRR binaries, modules and example configuration files will be installed into some
path on the build machine. The directory will have folders like /usr and /etc; this “root” should now be copied to
the host and installed on top of the root directory there.

Tar this sysroot (preserving permissions)
tar -C /some/path/to/sysroot -cpvf frr-${HOST_ARCH}.tar .

Transfer tar file to host machine

(continues on next page)

96 Chapter 2. Building FRR

FRR Developer’s Manual, Release latest

(continued from previous page)

scp frr-${HOST_ARCH}.tar me@host-machine:

Overlay the tarred sysroot on top of the host machine's root
ssh me@host-machine <<-EOF

May need to elevate permissions here

tar -C / -xpvf frr-${HOST_ARCH}.tar.gz .
EOF

Now FRR should be installed just as if make install had been run on the host machine. Create configuration files
and assign permissions as needed. Lastly, ensure the correct users and groups exist for FRR on the host machine.

2.23.6 Troubleshooting

Even when every precaution has been taken some things may still go wrong! This section details some common runtime
problems.

Mismatched Libraries

If you see something like this after installing on the host:

/usr/lib/frr/zebra: error while loading shared libraries: libyang.so.l: cannot open.
—»shared object file: No such file or directory

. at least one of FRR’s dependencies which was linked to the binary earlier is not available on the host OS. Even if
it has been installed the host repository’s version may lag what is needed for more recent FRR builds (this is likely to
happen with YANG at the moment).

If the matching library is not available from the host OS package manager it may be possible to compile them using
the same toolchain used to compile FRR. The library may have already been built earlier when compiling FRR on the
build machine, in which case it may be as simple as following the same workflow laid out during the Installation to
Host Machine.

Mismatched Glibc Versions

The version and implementation of the C standard library must match on both the host and build toolchain. The error
corresponding to this misconfiguration will look like:

/usr/lib/frr/zebra: /lib/${HOST_ARCH}/libc.so0.6: version "GLIBC_2.32' not found.,
—(required by /usr/lib/libfrr.so.0)

See the earlier warning about preventing a glibc mismatch.

2.23. Cross-Compiling 97

FRR Developer’s Manual, Release latest

98

Chapter 2. Building FRR

CHAPTER
THREE

RELEASES & PACKAGING

3.1 FRR Release Procedure

<version> - version to be released, e.g. 7.3 origin - FRR upstream repository

3.1.1 Stage 1 - Preparation

1. Prepare changelog for the new release
Note: use tools/release_notes.py to help draft release notes changelog

2. Checkout the existing dev/<version> branch.

git checkout dev/<version>

3. Create and push a new branch called stable/<version> based on the dev/<version> branch.

git checkout -b stable/<version>

4. Remove the development branch called dev/<version>

git push origin --delete dev/<version>

5. Update Changelog for Red Hat Packages:
Edit redhat/frr.spec.in and look for the %$changelog section:

¢ Change last (top of list) entry from %{version} to the last released version number. For example, if
<version>is 7.3 and the last public release was 7.2, you would use 7.2, changing the file like so:

* Tue Nov 7 2017 Martin Winter <mwinter@opensourcerouting.org> - %{version}

to:

“* Tue Nov 7 2017 Martin Winter <mwinter@opensourcerouting.org> - 7.2

¢ Add new entry to the top of the list with %{version} tag. Make sure to watch the format, i.e. the day is
always 2 characters, with the Ist character being a space if the day is one digit.

* Add the changelog text below this entry.
6. Update Changelog for Debian Packages:
Update debian/changelog:

99

FRR Developer’s Manual, Release latest

* Run following with last release version number and debian revision (usually -1) as argument to dch
--newversion VERSION. For example, if <version> is 7.3 then you will run dch --newversion 7.
3-1.

* The dch will run an editor, and you should add the changelog text below this entry, usually that would be:
New upstream version.

¢ Verify the changelog format using dpkg-parsechangelog. In the repository root:

dpkg-parsechangelog

You should see output like this:

vagrant@local ~/frr> dpkg-parsechangelog
Source: frr
Version: 7.3-dev-0
Distribution: UNRELEASED
Urgency: medium
Maintainer: FRRouting-Dev <dev@lists.frrouting.org>
Timestamp: 1540478210
Date: Thu, 25 Oct 2018 16:36:50 +0200
Changes:
frr (7.3-dev-0) RELEASED; urgency=-medium

* Your Changes Here

7. Commit the changes, adding the changelog to the commit message. Follow all existing commit guidelines. The

commit message should be akin to:

debian, redhat: updating changelog for new release

Change main version number:
¢ Edit configure.ac and change version in the AC_INIT command to <version>

Add and commit this change. This commit should be separate from the commit containing the changelog. The
commit message should be:

FRR Release <version>

The version field should be complete; i.e. for 8.0.0, the version should be 8.0.0 and not 8.0 or 8.

3.1.2 Stage 2 - Staging

1.

Push the stable branch to a new remote branch prefixed with rc:

git push origin stable/<version>:rc/version

This will trigger the NetDEF CI, which serve as a sanity check on the release branch. Verify that all tests pass
and that all package builds are successful. To do this, go to the NetDEF CI located here:

https://cil.netdef.org/browse/FRR-FRR

In the top left, look for rc-<version> in the “Plan branch” dropdown. Select this version. Note that it may take
a few minutes for the CI to kick in on this new branch and appear in the list.

2. Push the stable branch:

100

Chapter 3. Releases & Packaging

https://ci1.netdef.org/browse/FRR-FRR

FRR Developer’s Manual, Release latest

git push origin stable/<version>:refs/heads/stable/<version>

. Create and push a git tag for the version:

git tag -a frr-<version> -m "FRRouting Release <version>"
git push origin frr-<version>

. Create a new branch based on master, cherry-pick the commit made earlier that added the changelogs, and use

it to create a PR against master. This way master has the latest changelog for the next cycle.

. Kick off the “Release” build plan on the CI system for the correct release. Contact Martin Winter for this step.

Ensure all release packages build successfully.

. Kick off the Snapcraft build plan for the release.

3.1.3 Stage 3 - Publish

. Upload both the Debian and RPM packages to their respective repositories.

. Coordinate with the maintainer of FRR’s RPM repository to publish the RPM packages on that repository. Update

the repository webpage. Verify that the instructions on the webpage work and that FRR is installable from the
repository on a Red Hat system.

Current maintainer: Martin Winter

. Coordinate with the maintainer of FRR Debian package to publish the Debian packages on that repository. Update

the repository webpage. Verify that the instructions on the webpage work and that FRR is installable from the
repository on a Debian system.

Current maintainer: Jafar Al-Gharaibeh

. Log in to the Read The Docs instance. in the “FRRouting” project, navigate to the “Overview” tab. Ensure there

is a stable-<version> version listed and that it is enabled. Go to “Admin” and then “Advanced Settings”.
Change “Default version” to the new version. This ensures that the documentation shown to visitors is that of
the latest release by default.

This step must be performed by someone with administrative access to the Read the Docs instance.

. On GitHub, go to the <https://github.com/FRRouting/frr/releases>_ and click “Draft a new re-

lease”. Write a release announcement. The release announcement should follow the template in
release-announcement-template.md, located next to this document. Check for spelling errors, and
optionally (but preferably) have other maintainers proofread the announcement text.

Do not attach any packages or source tarballs to the GitHub release.

Publish the release once it is reviewed.

. Deploy Snapcraft release. Remember that this will automatically upgrade Snap users.

Current maintainer: Martin Winter

. Build and publish the Docker containers.

Current maintainer: Quentin Young

. Clone the frr-www repository:

git clone https://github.com/FRRouting/frr-www.git

. Add a new release announcement, using a previous announcement as template:

3.1.

FRR Release Procedure 101

https://github.com/FRRouting/frr/releases

FRR Developer’s Manual, Release latest

10.
11.

cp content/release/<old-version>.md content/release/<new-version>.md

Paste the GitHub release announcement text into this document, and remove line breaks. In other words, this:

This is one continuous
sentence that should be
rendered on one line

Needs to be changed to this:

This is one continuous sentence that should be rendered on one line

This is very important otherwise the announcement will be unreadable on the website.

To get the number of commiters and commits, here is a couple of handy commands:

The number of commits
% git log --oneline --no-merges base_8.2...base_8.1 | wc -1

The number of commiters
% git shortlog --summary --no-merges base_8.2...base_8.1 | wc -1

Make sure to add a link to the GitHub releases page at the top.
Deploy the updated frr-www on the frrouting.org web server and verify that the announcement text is visible.

Send an email to announce@lists. frrouting.org. The text of this email should include text as appropriate
from the GitHub release and a link to the GitHub release, Debian repository, and RPM repository.

3.2 Packaging Debian

(Tested on Ubuntu 14.04, 16.04, 17.10, 18.04, Debian jessie, stretch and buster.)

1.

Install the Debian packaging tools:

sudo apt install fakeroot debhelper devscripts

Checkout FRR under an unprivileged user account:

git clone https://github.com/frrouting/frr.git frr
cd frr

If you wish to build a package for a branch other than master:

git checkout <branch>

. Install build dependencies using the mk-build-deps tool from the devscripts package:

sudo mk-build-deps --install --remove debian/control

Alternatively, you can manually install build dependencies for your platform as outlined in Building FRR.

Install git-buildpackage package:

sudo apt-get install git-buildpackage

102

Chapter 3. Releases & Packaging

FRR Developer’s Manual, Release latest

5. (optional) Append a distribution identifier if needed (see below under Multi-Distribution builds.)

6. Build Debian Binary and/or Source Packages:

gbp buildpackage --git-builder=dpkg-buildpackage --git-debian-branch="$(git rev-
—,parse --abbrev-ref HEAD)" S$options

Where $options may contain any or all of the following items:

* build profiles specified with -P, e.g. -Ppkg. frr.nortrlib,pkg. frr.rtrlib. Multiple values are sep-
arated by commas and there must not be a space after the -P.

The following build profiles are currently available:

Profile Negation Effect
pkg.frrrtrlib | pkg.frr.nortrlib | builds frr-rpki-rtrlib package (or not)

» the -uc -us options to disable signing the packages with your GPG key

(git builds of the master or stable/X.X branches won’t be signed by default since their target release is set
to UNRELEASED.)

¢ the --build=type accepts following options (see dpkg-buildpackage manual page):

source builds the source package

any builds the architecture specific binary packages

all build the architecture independent binary packages

binary build the architecture specific and independent binary packages (alias for any,all)

full builds everything (alias for source,any,all)

Alternatively, you might want to replace dpkg-buildpackage with debuild wrapper that also runs lintian
and debsign on the final packages.

7. Done!

If all worked correctly, then you should end up with the Debian packages in the parent directory of where debuild
ran. If distributed, please make sure you distribute it together with the sources (frr_*.orig.tar.xz, frr_*.
debian.tar.xz and frr_%*.dsc)

Note: A package created from master or stable/X.X is slightly different from a package created from the debian
branch. The changelog for the former is autogenerated and sets the Debian revision to -0, which causes an intentional
lintian warning. The debian branch on the other hand has a manually maintained changelog that contains proper Debian
release versioning.

3.3 Multi-Distribution builds

You can optionally append a distribution identifier in case you want to make multiple versions of the package available
in the same repository.

dch -1 "~deb8u' 'build for Debian 8 (jessie)'
dch -1 '~deb9u' 'build for Debian 9 (stretch)'
dch -1 '"~ubuntul4.04.' 'build for Ubuntu 14.04 (trusty)'

(continues on next page)

3.3. Multi-Distribution builds 103

FRR Developer’s Manual, Release latest

(continued from previous page)

dch -1 '~ubuntul6.04.' 'build for Ubuntu 16.04 (xenial)'
dch -1 '"~ubuntul8.04.' 'build for Ubuntu 18.04 (bionic)'

Between building packages for specific distributions, the only difference in the package itself lies in the automatically
generated shared library dependencies, e.g. libjson-c2 or libjson-c3. This means that the architecture independent
packages should not have a suffix appended. Also, the current Debian testing/unstable releases should not have any
suffix appended.

For example, at the end of 2018 (i.e. buster/Debian 10 is the current “testing” release), the following is a complete
list of .deb files for Debian 8, 9 and 10 packages for FRR 6.0.1-1 with RPKI support:

frr_6.0.1-1_amd64.deb
frr_6.0.1-1~deb8ul_amd64.deb
frr_6.0.1-1~deb9ul_amd64.deb
frr-dbg_6.0.1-1_amd64.deb

frr-dbg_6.0.1-1~deb8ul_amd64.deb
frr-dbg_6.0.1-1~deb9ul_amd64.deb
frr-rpki-rtrlib_6.0.1-1_amd64.deb
frr-rpki-rtrlib_6.0.1-1~deb8ul_amd64.deb
frr-rpki-rtrlib_6.0.1-1~deb9ul_amd64.deb
frr-doc_6.0.1-1_all.deb
frr-pythontools_6.0.1-1_all.deb

Note that there are no extra versions of the frr-doc and frr-pythontools packages (because they are for architecture all,
not amd64), and the version for Debian 10 does not have a ~deb10ul suffix.

Warning: Do not use the - character in the version suffix. The last - in the version number is the separator
between upstream version and Debian version. 6.0.1-1~foobar-2 means upstream version 6.0.1-1~foobar,
Debian version 2. This is not what you want.

The only allowed characters in the Debian version are -9 A-Z a-z + . ~

Note: The separating character for the suffix must be the tilde (~) because the tilde is ordered in version-comparison
before the empty string. That means the order of the above packages is the following:

6.0.1-1 newer than 6.0.1-1~deb9ul newer than 6.0.1-1~deb8ul

If you use another character (e.g. +), the untagged version will be regarded as the “oldest’!

3.4 Packaging Red Hat

Tested on CentOS 6, CentOS 7, CentOS 8 and Fedora 24.

1. On CentOS 6, refer to CentOS 6 for details on installing sufficiently up-to-date package versions to enable build-
ing FRR.
Newer automake/autoconf/bison is only needed to build the RPM and is not needed to install the binary RPM
package.

2. Install the build dependencies for your platform. Refer to the platform-specific build documentation on how to
do this.

104 Chapter 3. Releases & Packaging

FRR Developer’s Manual, Release latest

. Install the following additional packages:

yum install rpm-build net-snmp-devel pam-devel libcap-devel

For CentOS 7 and CentOS 8, the package will be built using python3 and requires additional python3 packages:

yum install python3-devel python3-sphinx

Note: For CentOS 8 you need to install platform-python-devel package to provide /usr/bin/pathfix.

py:

yum install platform-python-devel

If yum is not present on your system, use dnf instead.

You should enable PowerTools repo if using CentOS 8 which is disabled by default.

. Checkout FRR:

git clone https://github.com/frrouting/frr.git frr

. Run Bootstrap and make distribution tar.gz:

cd frr

./bootstrap.sh

./configure --with-pkg-extra-version=-MyRPMVersion
make dist

Note: The only configure option respected when building RPMs is --with-pkg-extra-version.

. Create RPM directory structure and populate with sources:

mkdir rpmbuild

mkdir rpmbuild/SOURCES

mkdir rpmbuild/SPECS

cp redhat/*.spec rpmbuild/SPECS/
cp frr*.tar.gz rpmbuild/SOURCES/

. Edit rpm/SPECS/frr. spec with configuration as needed.

Look at the beginning of the file and adjust the following parameters to enable or disable features as required:

#i############H FRRouting (FRR) configure options ##############H###
with-feature options

%{!?with_pam: %global with_pam (VI
%{!?with_ospfclient: %global with_ospfclient 13
%{!?with_ospfapi: %global with_ospfapi 13
%{!?with_irdp: %global with_irdp 13}
%{!?with_rtadv: %global with_rtadv 13}
%{!?with_ldpd: %global with_ldpd 113
%{!?with_nhrpd: %global with_nhrpd 11}
%{!?with_eigrp: %global with_eigrpd 11}
%{!?with_shared: %global with_shared 13

(continues on next page)

3.4.

Packaging Red Hat

105

FRR Developer’s Manual, Release latest

(continued from previous page)

with_multipath
frr_user
vty_group
with_fpm
with_watchfrr
with_bgp_vnc
with_pimd
with_rpki

256 }
frr }
frrvty }
0}

(=R — I
e o

%{!?with_multipath: %global
%{!?frr_user: %global
%{!?vty_group: %global
%{!?with_fpm: %global
%{!?with_watchfrr: %global
%{!?with_bgp_vnc: %global
%{!?with_pimd: %global
%{!?with_rpki: %global
8. Build the RPM:

rpmbuild --define "_topdir ‘pwd’ /rpmbuild" -ba rpmbuild/SPECS/frr.spec

If building with RPKI, then download and install the additional RPKI packages from https://cil.netdef.org/
browse/RPKI-RTRLIB/latestSuccessful/artifact

If all works correctly, then you should end up with the RPMs under rpmbuild/RPMS and the source RPM under

rpmbuild/SRPMS.

106

Chapter 3. Releases & Packaging

https://ci1.netdef.org/browse/RPKI-RTRLIB/latestSuccessful/artifact
https://ci1.netdef.org/browse/RPKI-RTRLIB/latestSuccessful/artifact

CHAPTER
FOUR

PROCESS ARCHITECTURE

FRR is a suite of daemons that serve different functions. This document describes internal architecture of daemons,
focusing their general design patterns, and especially how threads are used in the daemons that use them.

4.1 Overview

The fundamental pattern used in FRR daemons is an event loop. Some daemons use kernel threads. In these daemons,
each kernel thread runs its own event loop. The event loop implementation is constructed to be thread safe and to allow
threads other than its owning thread to schedule events on it. The rest of this document describes these two designs in
detail.

4.2 Terminology

Because this document describes the architecture for kernel threads as well as the event system, a digression on termi-
nology is in order here.

Historically Quagga’s loop system was viewed as an implementation of userspace threading. Because of this design
choice, the names for various datastructures within the event system are variations on the term “thread”. The primary
datastructure that holds the state of an event loop in this system is called a “threadmaster”. Events scheduled on the
event loop - what would today be called an ‘event’ or ‘task’ in systems such as libevent - are called “threads” and
the datastructure for them is struct thread. To add to the confusion, these “threads” have various types, one of
which is “event”. To hopefully avoid some of this confusion, this document refers to these “threads” as a ‘task’ except
where the datastructures are explicitly named. When they are explicitly named, they will be formatted 1ike this to
differentiate from the conceptual names. When speaking of kernel threads, the term used will be “pthread” since FRR’s
kernel threading implementation uses the POSIX threads API.

4.3 Event Architecture

This section presents a brief overview of the event model as currently implemented in FRR. This doc should be expanded
and broken off into its own section. For now it provides basic information necessary to understand the interplay between
the event system and kernel threads.

The core event system is implemented in 1ib/thread. [ch]. The primary structure is struct thread_master,
hereafter referred to as a threadmaster. A threadmaster is a global state object, or context, that holds all the tasks
currently pending execution as well as statistics on tasks that have already executed. The event system is driven by
adding tasks to this data structure and then calling a function to retrieve the next task to execute. At initialization, a
daemon will typically create one threadmaster, add a small set of initial tasks, and then run a loop to fetch each task
and execute it.

107

https://en.wikipedia.org/wiki/Event_loop
https://en.wikipedia.org/wiki/Thread_(computing)#Kernel_threads

FRR Developer’s Manual, Release latest

These tasks have various types corresponding to their general action. The types are given by integer macros in thread.
h and are:

THREAD_READ Task which waits for a file descriptor to become ready for reading and then executes.
THREAD_WRITE Task which waits for a file descriptor to become ready for writing and then executes.
THREAD_TIMER Task which executes after a certain amount of time has passed since it was scheduled.

THREAD_EVENT Generic task that executes with high priority and carries an arbitrary integer indicating the event type to
its handler. These are commonly used to implement the finite state machines typically found in routing protocols.

THREAD_READY Type used internally for tasks on the ready queue.

THREAD_UNUSED Type used internally for struct thread objects that aren’t being used. The event system pools
struct thread to avoid heap allocations; this is the type they have when they’re in the pool.

THREAD_EXECUTE Just before a task is run its type is changed to this. This is used to show X as the type in the output
of show thread cpu.

The programmer never has to work with these types explicitly. Each type of task is created and queued via special-
purpose functions (actually macros, but irrelevant for the time being) for the specific type. For example, to add a
THREAD_READ task, you would call

thread_add_read(struct thread_master *master, int (*handler) (struct thread *), void *arg,
— int £d, struct thread **ref);

The struct thread is then created and added to the appropriate internal datastructure within the threadmaster.
Note that the READ and WRITE tasks are independent - a READ task only tests for readability, for example.

4.3.1 The Event Loop

To use the event system, after creating a threadmaster the program adds an initial set of tasks. As these tasks execute,
they add more tasks that execute at some point in the future. This sequence of tasks drives the lifecycle of the program.
When no more tasks are available, the program dies. Typically at startup the first task added is an I/O task for VTYSH
as well as any network sockets needed for peerings or IPC.

To retrieve the next task to run the program calls thread_fetch(). thread_fetch() internally computes which task
to execute next based on rudimentary priority logic. Events (type THREAD_EVENT) execute with the highest priority,
followed by expired timers and finally I/O tasks (type THREAD_READ and THREAD_WRITE). When scheduling a task
a function and an arbitrary argument are provided. The task returned from thread_fetch() is then executed with
thread_call().

The following diagram illustrates a simplified version of this infrastructure.

The series of “task” boxes represents the current ready task queue. The various other queues for other types are not
shown. The fetch-execute loop is illustrated at the bottom.

Mapping the general names used in the figure to specific FRR functions:
e taskis struct thread *
e fetchis thread_fetch()
* exec() is thread_call
e cancel () is thread_cancel)
* schedule() is any of the various task-specific thread_add_* functions

Adding tasks is done with various task-specific function-like macros. These macros wrap underlying functions in
thread. c to provide additional information added at compile time, such as the line number the task was scheduled

108 Chapter 4. Process Architecture

FRR Developer’s Manual, Release latest

I schedule() |
L. F |
task i M ||
cancel() ,
task - 5 I]
|
task 'l
|
task :
|
task :
task :
L |
|
I
|
|
[
exec()
fetch | | .o __.
'_’EE'“FE‘E"? ______ i

Fig. 1: Lifecycle of a program using a single threadmaster.

4.3. Event Architecture 109

FRR Developer’s Manual, Release latest

from, that can be accessed at runtime for debugging, logging and informational purposes. Each task type has its own
specific scheduling function that follow the naming convention thread_add_<type>; see thread.h for details.

There are some gotchas to keep in mind:

¢ I/O tasks are keyed off the file descriptor associated with the I/O operation. This means that for any given file
descriptor, only one of each type of I/O task (THREAD_READ and THREAD_WRITE) can be scheduled. For example,
scheduling two write tasks one after the other will overwrite the first task with the second, resulting in total loss
of the first task and difficult bugs.

» Timer tasks are only as accurate as the monotonic clock provided by the underlying operating system.

¢ Memory management of the arbitrary handler argument passed in the schedule call is the responsibility of the
caller.

4.4 Kernel Thread Architecture

Efforts have begun to introduce kernel threads into FRR to improve performance and stability. Naturally a kernel thread
architecture has long been seen as orthogonal to an event-driven architecture, and the two do have significant overlap
in terms of design choices. Since the event model is tightly integrated into FRR, careful thought has been put into how
pthreads are introduced, what role they fill, and how they will interoperate with the event model.

4.4.1 Design Overview

Each kernel thread behaves as a lightweight process within FRR, sharing the same process memory space. On the
other hand, the event system is designed to run in a single process and drive serial execution of a set of tasks. With this
consideration, a natural choice is to implement the event system within each kernel thread. This allows us to leverage the
event-driven execution model with the currently existing task and context primitives. In this way the familiar execution
model of FRR gains the ability to execute tasks simultaneously while preserving the existing model for concurrency.

The following figure illustrates the architecture with multiple pthreads, each running their own threadmaster-based
event loop.

Each roundrect represents a single pthread running the same event loop described under Event Architecture. Note the
arrow from the exec () box on the right to the schedule () box in the middle pthread. This illustrates code running
in one pthread scheduling a task onto another pthread’s threadmaster. A global lock for each threadmaster is used
to synchronize these operations. The pthread names are examples.

4.4.2 Kernel Thread Wrapper

The basis for the integration of pthreads and the event system is a lightweight wrapper for both systems implemented in
lib/frr_pthread. [ch]. The header provides a core datastructure, struct frr_pthread, that encapsulates struc-
tures from both POSIX threads and thread. [ch]. In particular, this datastructure has a pointer to a threadmaster
that runs within the pthread. It also has fields for a name as well as start and stop functions that have signatures similar
to the POSIX arguments for pthread_create().

Calling frr_pthread_new() creates and registers a new frr_pthread. The returned structure has a pre-initialized
threadmaster, and its start and stop functions are initialized to defaults that will run a basic event loop with the
given threadmaster. Calling frr_pthread_run starts the thread with the start function. From there, the model is the
same as the regular event model. To schedule tasks on a particular pthread, simply use the regular thread. c functions
as usual and provide the threadmaster pointed to from the frr_pthread. As part of implementing the wrapper,

110 Chapter 4. Process Architecture

FRR Developer’s Manual, Release latest

Main Thread IfO Thread XYZ Thread

S v g "

\ \
task task ' task [
cancel() cancel() cancel()
task

1
|
] 1 1
| 1 1
| task ! task ~|
| 1 1
task ‘| task | task i
| | |
task i task i task !
| | |
task l task l task l
| | |
task : task : task [
task r: task |: task Ii'
I b I |
| | I
] 1 |
I | 1
1 |
0

Fig. 2: Lifecycle of a program using multiple pthreads, each running their own threadmaster

4.4. Kernel Thread Architecture 111

FRR Developer’s Manual, Release latest

the thread. c functions were made thread-safe. Consequently, it is safe to schedule events on a threadmaster be-
longing both to the calling thread as well as any other pthread. This serves as the basis for inter-thread communi-
cation and boils down to a slightly more complicated method of message passing, where the messages are the regu-
lar task events as used in the event-driven model. The only difference is thread cancellation, which requires calling
thread_cancel_async() instead of thread_cancel to cancel a task currently scheduled on a threadmaster be-
longing to a different pthread. This is necessary to avoid race conditions in the specific case where one pthread wants
to guarantee that a task on another pthread is cancelled before proceeding.

In addition, the existing commands to show statistics and other information for tasks within the event driven model
have been expanded to handle multiple pthreads; running show thread cpu will display the usual event breakdown,
but it will do so for each pthread running in the program. For example, BGPD runs a dedicated I/O pthread and shows
the following output for show thread cpu:

frr# show thread cpu
Thread statistics for bgpd:

Showing statistics for pthread main

CPU (user+system): Real (wall-clock):
Active Runtime(ms) Invoked Avg uSec Max uSecs Avg uSec Max uSecs Type Thread

0 1389.000 10 138900 248000 135549 255349 T subgroup_
—.coalesce_timer

0 0.000 1 0 0 18 18 T bgp_startup_
—timer_expire

0 850.000 18 47222 222000 47795 233814 T work_queue_run

0 0.000 10 0 0 6 14 T update_
—subgroup_merge_check_thread_cb

0 0.000 8 0 0 117 160 W zclient_flush_
—data

2 2.000 1 2000 2000 831 831 R bgp_accept

0 1.000 1 1000 1000 2832 2832 E zclient_
—.connect

1 42082.000 240574 174 37000 178 72810 R vtysh_read

1 152.000 1885 80 2000 96 6292 R zclient_read

0 549346.000 2997298 183 7000 153 20242 E bgp_event

0 2120.000 300 7066 14000 6813 22046 T (bgp_holdtime_
—timer)

0 0.000 2 0 0 57 59 T update_group_
—refresh_default_originate_route_map

0 90.000 1 90000 90000 73729 73729 T bgp_route_map_
—update_timer

0 1417.000 9147 154 48000 132 61998 T bgp_process_
—packet

300 71807.000 2995200 23 3000 24 11066 T (bgp_connect_

—timer)

0 1894.000 12713 148 45000 112 33606 T (bgp_generate_
—updgrp_packets)

0 0.000 1 0 0 105 105 W vtysh_write

0 52.000 599 86 2000 138 6992 T (bgp_start_
—timer)

1 1.000 8 125 1000 164 593 R vtysh_accept

0 15.000 600 25 2000 15 153 T (bgp_routeadv_
—timer)

(continues on next page)

112 Chapter 4. Process Architecture

FRR Developer’s Manual, Release latest

(continued from previous page)

0 11.000 299 36 3000 53 3128 RW bgp_connect_
—.check

Showing statistics for pthread BGP I/0 thread

CPU (user+system): Real (wall-clock):
Active Runtime(ms) Invoked Avg uSec Max uSecs Avg uSec Max uSecs Type Thread

0 1611.000 9296 173 13000 188 13685 R bgp_process_
—reads

0 2995.000 11753 254 26000 182 29355 W bgp_process_
—writes

Showing statistics for pthread BGP Keepalives thread

CPU (user+system): Real (wall-clock):
Active Runtime(ms) Invoked Avg uSec Max uSecs Avg uSec Max uSecs Type Thread
No data to display yet.

Attentive readers will notice that there is a third thread, the Keepalives thread. This thread is responsible for — surprise
— generating keepalives for peers. However, there are no statistics showing for that thread. Although the pthread uses
the frr_pthread wrapper, it opts not to use the embedded threadmaster facilities. Instead it replaces the start
and stop functions with custom functions. This was done because the threadmaster facilities introduce a small but
significant amount of overhead relative to the pthread’s task. In this case since the pthread does not need the event-
driven model and does not need to receive tasks from other pthreads, it is simpler and more efficient to implement it
outside of the provided event facilities. The point to take away from this example is that while the facilities to make
using pthreads within FRR easy are already implemented, the wrapper is flexible and allows usage of other models
while still integrating with the rest of the FRR core infrastructure. Starting and stopping this pthread works the same
as it does for any other frr_pthread; the only difference is that event statistics are not collected for it, because there
are no events.

4.5 Notes on Design and Documentation

Because of the choice to embed the existing event system into each pthread within FRR, at this time there is not
integrated support for other models of pthread use such as divide and conquer. Similarly, there is no explicit support
for thread pooling or similar higher level constructs. The currently existing infrastructure is designed around the concept
of long-running worker threads responsible for specific jobs within each daemon. This is not to say that divide and
conquer, thread pooling, etc. could not be implemented in the future. However, designs in this direction must be very
careful to take into account the existing codebase. Introducing kernel threads into programs that have been written
under the assumption of a single thread of execution must be done very carefully to avoid insidious errors and to ensure
the program remains understandable and maintainable.

In keeping with these goals, future work on kernel threading should be extensively documented here and FRR devel-
opers should be very careful with their design choices, as poor choices tightly integrated can prove to be catastrophic
for development efforts in the future.

4.5. Notes on Desigh and Documentation 113

FRR Developer’s Manual, Release latest

114 Chapter 4. Process Architecture

CHAPTER
FIVE

LIBRARY FACILITIES (LIBFRR)

5.1 Memtypes

FRR includes wrappers around malloc() and free() that count the number of objects currently allocated, for each
of a defined MTYPE.

To this extent, there are memory groups and memory types. Each memory type must belong to a memory group, this
is used just to provide some basic structure.

Example:

Listing 1: mydaemon.h

DECLARE_MGROUP (MYDAEMON) ;
DECLARE_MTYPE (MYNEIGHBOR) ;

115

FRR Developer’s Manual, Release latest

Listing 2: mydaemon.c

DEFINE_MGROUP(MYDAEMON, "My daemon's memory");
DEFINE_MTYPE(MYDAEMON, MYNEIGHBOR, "Neighbor entry");
DEFINE_MTYPE_STATIC(MYDAEMON, MYNEIGHBORNAME, "Neighbor name");

struct neigh *neighbor_new(const char *name)

{
struct neigh *n = XMALLOC(MYNEIGHBOR, sizeof(*n));
n->name = XSTRDUP(MYNEIGHBORNAME, name);
return n;
}
void neighbor_free(struct neigh *n)
{
XFREE (MYNEIGHBORNAME, n->name) ;
XFREE(MYNEIGHBOR, n);
}

5.1.1 Definition

struct memtype
This is the (internal) type used for MTYPE definitions. The macros below should be used to create these, but in
some cases it is useful to pass a struct memtype * pointer to some helper function.

The MTYPE_name created by the macros is declared as a pointer, i.e. a function taking a struct memtype *
argument can be called with an MTYPE_name argument (as opposed to &MTYPE_name.)

Note: AsMTYPE_name is a variable assigned from & _mt_name and not a constant expression, it cannot be used
as initializer for static variables. In the case please fall back to & mt_name.

DECLARE_MGROUP (name)
This macro forward-declares a memory group and should be placed in a .h file. It expands to an extern struct
memgroup statement.

DEFINE_MGROUP (mname, description)
Defines/implements a memory group. Must be placed into exactly one . c file (multiple inclusion will result in
a link-time symbol conflict).

Contains additional logic (constructor and destructor) to register the memory group in a global list.

DECLARE_MTYPE (name)
Forward-declares a memory type and makes MTYPE_name available for use. Note that the MTYPE_ prefix must
not be included in the name, it is automatically prefixed.

MTYPE_name is created as a static const symbol, i.e. a compile-time constant. It refers to an extern struct
memtype _mt_name, where name is replaced with the actual name.

DEFINE_MTYPE (group, name, description)
Define/implement a memory type, must be placed into exactly one .c file (multiple inclusion will result in a
link-time symbol conflict).

Like DEFINE_MGROUP, this contains actual code to register the MTYPE under its group.

116 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

DEFINE_MTYPE_STATIC(group, name, description)
Same as DEFINE_MTYPE, but the DEFINE_MTYPE_STATIC variant places the C static keyword on the definition,
restricting the MTYPE’s availability to the current source file. This should be appropriate in >80% of cases.

Todo: Daemons currently have daemon_memory. [ch] files listing all of their MTYPEs. This is not how it
should be, most of these types should be moved into the appropriate files where they are used. Only a few
MTYPESs should remain non-static after that.

5.1.2 Usage

void *XMALLOC (struct memtype *mtype, size_t size)
void *XCALLOC(struct memtype *mtype, size_t size)

void *XSTRDUP (struct memtype *mtype, const char *name)
Allocation wrappers for malloc/calloc/realloc/strdup, taking an extra mtype parameter.

void *XREALLOC (struct memtype *mtype, void *ptr, size_t size)
Wrapper around realloc() with MTYPE tracking. Note that ptr may be NULL, in which case the function does
the same as XMALLOC (regardless of whether the system realloc() supports this.)

void XFREE (struct memtype *mtype, void *ptr)
Wrapper around free(), again taking an extra mtype parameter. This is actually a macro, with the following
additional properties:

¢ the macro contains ptr = NULL

e if ptr is NULL, no operation is performed (as is guaranteed by system implementations.) Do not surround
XFREE with if (ptr != NULL) checks.

void XCOUNTFREE (struct memtype *mtype, void *ptr)
This macro is used to count the ptr as freed without actually freeing it. This may be needed in some very
specific cases, for example, when the ptr was allocated using any of the above wrappers and will be freed by
some external library using simple free().

5.2 RCU

5.2.1 Introduction
RCU (Read-Copy-Update) is, fundamentally, a paradigm of multithreaded operation (and not a set of APIs.) The core
ideas are:

* longer, complicated updates to structures are made only on private, “invisible” copies. Other threads, when they
access the structure, see an older (but consistent) copy.

 once done, the updated copy is swapped in in a single operation so that other threads see either the old or the
new data but no inconsistent state between.

* the old instance is only released after making sure that it is impossible any other thread might still be reading it.

For more information, please search for general or Linux kernel RCU documentation; there is no way this doc can be
comprehensive in explaining the interactions:

5.2. RCU 117

FRR Developer’s Manual, Release latest

* https://en.wikipedia.org/wiki/Read-copy-update

* https://www.kernel.org/doc/html/latest/kernel-hacking/locking. html#avoiding-locks-read-copy-update
* https://lwn.net/ Articles/262464/

* http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf

* http://Ise.sourceforge.net/locking/rcupdate.html

RCU, the TL;DR

1. data structures are always consistent for reading. That’s the “R” part.
2. reading never blocks / takes a lock.

3. rcu_read_lock is not a lock in the traditional sense. Think of it as a “reservation”; it notes what the oldest possible
thing the thread might be seeing is, and which thus can’t be deleted yet.

4. you create some object, finish it up, and then publish it.

5. publishing is an atomic_%* call with memory_order_release, which tells the compiler to make sure prior
memory writes have completed before doing the atomic op.

6. ATOMLIST_* add operations do the memory_order_release for you.
7. you can’t touch the object after it is published, except with atomic ops.

8. because you can’t touch it, if you want to change it you make a new copy, work on that, and then publish the new
copy. That’s the “CU” part.

9. deleting the object is also an atomic op.

10. other threads that started working before you published / deleted an object might not see the new object / still see
the deleted object.

11. because other threads may still see deleted objects, the free () needs to be delayed. That’s what rcu_free()
is for.

When (not) to use RCU
RCU is designed for read-heavy workloads where objects are updated relatively rarely, but frequently accessed. Do not
indiscriminately replace locking by RCU patterns.

The “copy” part of RCU implies that, while updating, several copies of a given object exist in parallel. Even after the
updated copy is swapped in, the old object remains queued for freeing until all other threads are guaranteed to not be
accessing it anymore, due to passing a sequence point. In addition to the increased memory usage, there may be some
bursted (due to batching) malloc contention when the RCU cleanup thread does its thing and frees memory.

Other useful patterns
In addition to the full “copy object, apply changes, atomically update” approach, there are 2 “reduced” usage cases that
can be done:

 atomically updating single pieces of a particular object, e.g. some flags or configuration piece

* straight up read-only / immutable objects

118 Chapter 5. Library Facilities (libfrr)

https://en.wikipedia.org/wiki/Read-copy-update
https://www.kernel.org/doc/html/latest/kernel-hacking/locking.html#avoiding-locks-read-copy-update
https://lwn.net/Articles/262464/
http://www.rdrop.com/users/paulmck/RCU/rclock_OLS.2001.05.01c.pdf
http://lse.sourceforge.net/locking/rcupdate.html

FRR Developer’s Manual, Release latest

Both of these cases can be considered RCU “subsets”. For example, when maintaining an atomic list of items, but these
items only have a single integer value that needs to be updated, that value can be atomically updated without copying
the entire object. However, the object still needs to be free’d through rcu_free () since reading/updating and deleting
might be happening concurrently. The same applies for immutable objects; deletion might still race with reading so
they need to be free’d through RCU.

5.2.2 FRR API

Before diving into detail on the provided functions, it is important to note that the FRR RCU API covers the cleanup
part of RCU, not the read-copy-update paradigm itself. These parts are handled by standard C11 atomic operations,
and by extension through the atomic data structures (ATOMLIST, ATOMSORT & co.)

The rcu_* functions only make sense in conjunction with these RCU access patterns. If you're calling the RCU API
but not using these, something is wrong. The other way around is not necessarily true; it is possible to use atomic ops
& datastructures with other types of locking, e.g. rwlocks.

void rcu_read_lock ()

void rcu_read_unlock ()
These functions acquire / release the RCU read-side lock. All access to RCU-guarded data must be inside a block
guarded by these. Any number of threads may hold the RCU read-side lock at a given point in time, including
both no threads at all and all threads.

The functions implement a depth counter, i.e. can be nested. The nested calls are cheap, since they only incre-
ment/decrement the counter. Therefore, any place that uses RCU data and doesn’t have a guarantee that the caller
holds RCU (e.g. 1ib/ code) should just have its own rcu_read_lock/rcu_read_unlock pair.

At the “root” level (e.g. un-nested), these calls can incur the cost of one syscall (to futex()). That puts them
on about the same cost as a mutex lock/unlock.

The thread_master code currently always holds RCU everywhere, except while doing the actual poll()
syscall. This is both an optimization as well as an “easement” into getting RCU going. The current imple-
mentation contract is that any struct thread * callback is called with a RCU holding depth of 1, and that this
is owned by the thread so it may (should) drop and reacquire it when doing some longer-running work.

Warning: The RCU read-side lock must be held continuously for the entire time any piece of RCU data
is used. This includes any access to RCU data after the initial atomic_load. If the RCU read-side lock is
released, any RCU-protected pointers as well as the data they refer to become invalid, as another thread may
have called rcu_free () on them.

struct rcu_head
struct rcu_head_close

struct rcu_action
The rcu_head structures are small (16-byte) bits that contain the queueing machinery for the RCU
sweeper/cleanup mechanisms.

Any piece of data that is cleaned up by RCU needs to have a matching rcu_head embedded in it. If there is
more than one cleanup operation to be done (e.g. closing a file descriptor), more than one rcu_head may be
embedded.

Warning: It is not possible to reuse a rcu_head. It is owned by the RCU code as soon as rcu_* is called
on it.

5.2. RCU 119

FRR Developer’s Manual, Release latest

The _close variant carries an extra int £d field to store the fd to be closed.

To minimize the amount of memory used for rcu_head, details about the RCU operation to be performed are
moved into the rcu_action structure. It contains e.g. the MTYPE for rcu_free() calls. The pointer to be
freed is stored as an offset relative to the rcu_head, which means it must be embedded as a struct field so the
offset is constant.

The rcu_action structure is an implementation detail. Using rcu_free or rcu_close will set it up correctly
without further code needed.

The rcu_head may be put in an union with other data if the other data is only used during “life” of the data,
since the rcu_head is used only for the “death” of data. But note that other threads may still be reading a piece
of data while a thread is working to free it.

void rcu_f£free (struct memtype *mtype, struct X *ptr, field)
Free a block of memory after RCU has ensured no other thread can be accessing it anymore. The pointer remains
valid for any other thread that has called rcu_read_lock () before the rcu_£free call.

Warning: Insome other RCU implementations, the pointer remains valid to the calling thread if it is holding
the RCU read-side lock. This is not the case in FRR, particularly when running single-threaded. Enforcing
this rule also allows static analysis to find use-after-free issues.

mtype is the libfrr MTYPE_FOO allocation type to pass to XFREE().

field must be the name of a struct rcu_head member field in ptr. The offset of this field (which must be
constant) is used to reduce the memory size of struct rcu_head.

Note: rcu_free (and rcu_close) calls are more efficient if they are put close to each other. When freeing
several RCU’d resources, try to move the calls next to each other (even if the data structures do not directly point
to each other.)

Having the calls bundled reduces the cost of adding the rcu_head to the RCU queue; the RCU queue is an
atomic data structure whose usage will require the CPU to acquire an exclusive hold on relevant cache lines.

void rcu_close(struct rcu_head_close *head, int fd)
Close a file descriptor after ensuring no other thread might be using it anymore. Same as rcu_free (), except it
calls close instead of free.

Internals

struct rcu_thread
Per-thread state maintained by the RCU code, set up by the following functions. A pointer to a thread’s own
rcu_thread is saved in thread-local storage.

struct rcu_thread *rcu_thread_prepare (void)

void rcu_thread_unprepare (struct rcu_thread *rcu_thread)

void rcu_thread_start (struct rcu_thread *rcu_thread)
Since the RCU code needs to have a list of all active threads, these functions are used by the frr_pthread code
to set up threads. Teardown is automatic. It should not be necessary to call these functions.

Any thread that accesses RCU-protected data needs to be registered with these functions. Threads that do not
access RCU-protected data may call these functions but do not need to.

120 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

Note that passing a pointer to RCU-protected data to some library which accesses that pointer makes the library
“access RCU-protected data”. In that case, either all of the library’s threads must be registered for RCU, or the
code must instead pass a (non-RCU) copy of the data to the library.

void rcu_shutdown (void)
Stop the RCU sweeper thread and make sure all cleanup has finished.

This function is called on daemon exit by the libfrr code to ensure pending RCU operations are completed. This
is mostly to get a clean exit without memory leaks from queued RCU operations. It should not be necessary to
call this function as libfrr handles this.

5.2.3 FRR specifics and implementation details

The FRR RCU infrastructure has the following characteristics:

« itis Epoch-based with a 32-bit wrapping counter. (This is somewhat different from other Epoch-based approaches
which may be designed to only use 3 counter values, but works out to a simple implementation.)

« instead of tracking CPUs as the Linux kernel does, threads are tracked. This has exactly zero semantic impact,
RCU just cares about “threads of execution”, which the kernel can optimize to CPUs but we can’t. But it really
boils down to the same thing.

e there are no rcu_dereference and rcu_assign_pointer - use atomic_load and atomic_store instead.
(These didn’t exist when the Linux RCU code was created.)

¢ there is no synchronize_rcu; this is a design choice but may be revisited at a later point. synchronize_rcu
blocks a thread until it is guaranteed that no other threads might still be accessing data structures that they may
have access to at the beginning of the function call. This is a blocking design and probably not appropriate for
FRR. Instead, rcu_call can be used to have the RCU sweeper thread make a callback after the same constraint
is fulfilled in an asynchronous way. Most needs should be covered by rcu_£free and rcu_close.

5.3 Type-safe containers

Note: This section previously used the term [list; it was changed to container to be more clear.

5.3.1 Common container interface

FRR includes a set of container implementations with abstracted common APIs. The purpose of this is easily allow
swapping out one data structure for another while also making the code easier to read and write. There is one API for
unsorted containers and a similar but not identical API for sorted containers - and heaps use a middle ground of both.

For unsorted containers, the following implementations exist:
* single-linked list with tail pointer (e.g. STAILQ in BSD)
* double-linked list
* atomic single-linked list with tail pointer
Being partially sorted, the oddball structure:
* an 8-ary heap
For sorted containers, these data structures are implemented:

* single-linked list

5.3. Type-safe containers 121

FRR Developer’s Manual, Release latest

* atomic single-linked list
* skiplist
red-black tree (based on OpenBSD RB_TREE)

hash table (note below)

Except for hash tables, each of the sorted data structures has a variant with unique and non-unique items. Hash tables
always require unique items and mostly follow the “sorted” API but use the hash value as sorting key. Also, iterating
while modifying does not work with hash tables. Conversely, the heap always has non-unique items, but iterating while
modifying doesn’t work either.

The following sorted structures are likely to be implemented at some point in the future:
* atomic skiplist
¢ atomic hash table (note below)

The APIs are all designed to be as type-safe as possible. This means that there will be a compiler warning when an
item doesn’t match the container, or the return value has a different type, or other similar situations. You should never
use casts with these APIs. If a cast is necessary in relation to these APIs, there is probably something wrong with the
overall design.

Only the following pieces use dynamically allocated memory:
* the hash table itself is dynamically grown and shrunk

* skiplists store up to 4 next pointers inline but will dynamically allocate memory to hold an item’s 5th up to 16th
next pointer (if they exist)

¢ the heap uses a dynamically grown and shrunk array of items

5.3.2 Cheat sheet

Auvailable types:

DECLARE_LIST
DECLARE_ATOMLIST
DECLARE_DLIST

DECLARE_HEAP

DECLARE_SORTLIST_UNIQ
DECLARE_SORTLIST_NONUNIQ
DECLARE_ATOMLIST_UNIQ
DECLARE_ATOMLIST_NONUNIQ
DECLARE_SKIPLIST_UNIQ
DECLARE_SKIPLIST_NONUNIQ
DECLARE_RBTREE_UNIQ
DECLARE_RBTREE_NONUNIQ

DECLARE_HASH

Functions provided:

122 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

Function LIST HEAP | HASH | * UNIQ | *_ NONUNIQ
_init, _fini yes yes yes yes yes
_first, _next, _next_safe, yes yes yes yes yes
_const_first, _const_next

_last, _prev, _prev_safe, DLIST — — RB only | RB only
_const_last, _const_prev only

_swap_all yes yes yes yes yes
_anywhere yes - - - -
_add_head, _add_tail, _add_after yes - — — —

_add - yes yes yes yes
_member yes yes yes yes yes
_del, _pop yes yes yes yes yes
_find, _const_find — — yes yes —
_find_lt, _find_gteq, - - - yes yes
_const_find_It, _const_find_gteq

use with frr_each() macros yes yes yes yes yes

5.3.3 Datastructure type setup

Each of the data structures has a PREDECL_* and a DECLARE_* macro to set up an “instantiation” of the container. This
works somewhat similar to C++ templating, though much simpler.

In all following text, the Z prefix is replaced with a name chosen for the instance of the datastructure.

The common setup pattern will look like this:

#include <typesafe.h>

PREDECL_XXX(Z);
struct item {
int otherdata;
struct Z_item mylistitem;

}

struct Z_head mylisthead;

/* unsorted: */
DECLARE_XXX(Z, struct item, mylistitem);

/% sorted, items that compare as equal cannot be added to list */
int compare_func(const struct item *a, const struct item *b);
DECLARE_XXX_UNIQ(Z, struct item, mylistitem, compare_func);

/% sorted, items that compare as equal can be added to list */
int compare_func(const struct item *a, const struct item *b);
DECLARE_XXX_NONUNIQ(Z, struct item, mylistitem, compare_func);

/* hash tables: */

int compare_func(const struct item *a, const struct item *b);
uint32_t hash_func(const struct item *a);

DECLARE_XXX(Z, struct item, mylistitem, compare_func, hash_func);

XXX is replaced with the name of the data structure, e.g. SKIPLIST or ATOMLIST. The DECLARE_XXX invocation can

5.3. Type-safe containers 123

FRR Developer’s Manual, Release latest

either occur in a .h file (if the container needs to be accessed from several C files) or it can be placed in a .c file (if
the container is only accessed from that file.) The PREDECL_XXX invocation defines the struct Z_item and struct
Z_head types and must therefore occur before these are used.

To switch between compatible data structures, only these two lines need to be changes. To switch to a data structure
with a different API, some source changes are necessary.

5.3.4 Common iteration macros

The following iteration macros work across all data structures:

frr_each(Z, head, item)
Equivalent to:

for (item = Z_first(&head); item; item = Z_next(&ead, item))

Note that this will fail if the container is modified while being iterated over.

frr_each_safe(Z, head, item)
Same as the previous, but the next element is pre-loaded into a “hidden” variable (named Z_safe.) Equivalent
to:

for (item = Z_first(&head); item; item = next) {
next = Z_next_safe(&head, item);

Warning: Iterating over hash tables while adding or removing items is not possible. The iteration position
will be corrupted when the hash tables is resized while iterating. This will cause items to be skipped or
iterated over twice.

frr_each_from(Z, head, item, from)
Iterates over the container, starting at item from. This variant is “safe” as in the previous macro. Equivalent to:

for (item = from; item; item = from) {
from = Z_next_safe(&head, item);

Note: The from variable is written to. This is intentional - you can resume iteration after breaking out of the
loop by keeping the from value persistent and reusing it for the next loop.

frr_rev_each(Z, head, item)

frr_rev_each_safe(Z, head, item)

frr_rev_each_from(Z, head, item, from)
Reverse direction variants of the above. Only supported on containers that implement _last and _prev (i.e.
RBTREE and DLIST).

To iterate over const pointers, add _const to the name of the datastructure (Z above), e.g. frr_each (mylist,
head, item) becomes frr_each (mylist_const, head, item).

124 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

5.3.5 Common API

The following documentation assumes that a container has been defined using Z as the name, and itemtype being the
type of the items (e.g. struct item.)

void Z_init (struct Z_head*)
Initializes the container for use. For most implementations, this just sets some values. Hash tables are the only
implementation that allocates memory in this call.

void Z_f£ini (struct Z_head*)
Reverse the effects of Z_init (). The container must be empty when this function is called.

Warning: This function may assert () if the container is not empty.

size_t Z_count (const struct Z_head*)
Returns the number of items in a structure. All structures store a counter in their Z_head so that calling this
function completes in O(1).

Note: For atomic containers with concurrent access, the value will already be outdated by the time this function
returns and can therefore only be used as an estimate.

bool Z_member (const struct Z_head*, const itemtype*)
Determines whether some item is a member of the given container. The item must either be valid on some
container, or set to all zeroes.

On some containers, if no faster way to determine membership is possible, this is simply item ==
Z_findChead, item).

Not currently available for atomic containers.

const itemtype *Z_const_£first (const struct Z_head*)

itemtype *Z_first (struct Z_head*)
Returns the first item in the structure, or NULL if the structure is empty. This is O(1) for all data structures except
red-black trees where it is O(log n).

const itemtype *Z_const_last (const struct Z_head*)

itemtype *Z_last (struct Z_head*)
Last item in the structure, or NULL. Only available on containers that support reverse iteration (i.e. RBTREE and
DLIST).

itemtype *Z_pop (struct Z_head*)
Remove and return the first item in the structure, or NULL if the structure is empty. Like Z_first (), this is O(1)
for all data structures except red-black trees where it is O(log n) again.

This function can be used to build queues (with unsorted structures) or priority queues (with sorted structures.)

Another common pattern is deleting all container items:

while ((item = Z_pop(Chead)))
item_free(item);

5.3. Type-safe containers 125

FRR Developer’s Manual, Release latest

Note: This function can - and should - be used with hash tables. It is not affected by the “modification while
iterating” problem. To remove all items from a hash table, use the loop demonstrated above.

const itemtype *Z_const_next (const struct Z_head*, const itemtype *prev)

itemtype *Z_next (struct Z_head*, itemtype *prev)
Return the item that follows after prev, or NULL if prev is the last item.

Warning: prev must not be NULL! Use Z_next_safe() if prev might be NULL.

itemtype *Z_next_safe(struct Z_head*, itemtype *prev)
Same as Z_next (), except that NULL is returned if prev is NULL.

const itemtype *Z_const_prev(const struct Z_head*, const itemtype *next)

itemtype *Z_prev (struct Z_head*, itemtype *next)

itemtype *Z_prev_safe(struct Z_head*, itemtype *next)
As above, but preceding item. Only available on structures that support reverse iteration (i.e. RBTREE and DLIST).

itemtype *Z_del (struct Z_head*, itemtype *item)
Remove item from the container and return it.

Note: This function’s behaviour is undefined if item is not actually on the container. Some structures return
NULL in this case while others return item. The function may also call assert () (but most don’t.)

itemtype *Z_swap_all (struct Z_head*, struct Z_head*)
Swap the contents of 2 containers (of identical type). This exchanges the contents of the two head structures and
updates pointers if necessary for the particular data structure. Fast for all structures.

(Not currently available on atomic containers.)

Todo: Z_del_after()/Z_del_hint()?

5.3.6 API for unsorted structures

Since the insertion position is not pre-defined for unsorted data, there are several functions exposed to insert data:

Note: item must not be NULL for any of the following functions.

DECLARE_XXX (Z, type, field)

Parameters

* XXX (1isttype) — LIST, DLIST or ATOMLIST to select a data structure implementation.

126 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

* Z (token) — Gives the name prefix that is used for the functions created for this instantiation.
DECLARE_XXX(foo, ...) gives struct foo_item, foo_add_head(), foo_count(),
etc. Note that this must match the value given in PREDECL_XXX(fo0).

* type (typename) — Specifies the data type of the list items, e.g. struct item. Note that
struct must be added here, it is not automatically added.

o field (token) — References a struct member of type that must be typed as struct
foo_item. This struct member is used to store “next” pointers or other data structure specific
data.

void Z_add_head (struct Z_head*, itemtype *item)
Insert an item at the beginning of the structure, before the first item. This is an O(1) operation for non-atomic
lists.

void Z_add_tail (struct Z_head*, itemtype *item)
Insert an item at the end of the structure, after the last item. This is also an O(1) operation for non-atomic lists.

void Z_add_after (struct Z_head*, itemtype *after, itemtype *item)
Insert item behind after. If after is NULL, the item is inserted at the beginning of the list as with
Z_add_head (). This is also an O(1) operation for non-atomic lists.

A common pattern is to keep a “previous” pointer around while iterating:

itemtype *prev = NULL, *item;

frr_each_safe(Z, head, item) {
if (something) {
Z_add_after(head, prev, item);
break;
}

prev = item;

Todo: maybe flip the order of item & after? Z_add_afterChead, item, after)

bool Z_anywhere (const itemtype*)

Returns whether an item is a member of any container of this type. The item must either be valid on some
container, or set to all zeroes.

Guaranteed to be fast (pointer compare or similar.)

Not currently available for sorted and atomic containers. Might be added for sorted containers at some point
(when needed.)

5.3.7 API for sorted structures
Sorted data structures do not need to have an insertion position specified, therefore the insertion calls are different from

unsorted containers. Also, sorted containers can be searched for a value.

DECLARE_XXX_UNIQ(Z, type, field, compare_func)

Parameters

* XXX (Iisttype) — One of the following: SORTLIST (single-linked sorted list), SKIPLIST
(skiplist), RBTREE (RB-tree) or ATOMSORT (atomic single-linked list).

5.3. Type-safe containers 127

FRR Developer’s Manual, Release latest

* Z (token) — Gives the name prefix that is used for the functions created for this instanti-
ation. DECLARE_XXX(foo, ...) gives struct foo_item, foo_add(), foo_count(),
etc. Note that this must match the value given in PREDECL_XXX(fo0).

* type (typename) — Specifies the data type of the items, e.g. struct item. Note that
struct must be added here, it is not automatically added.

o field (token) — References a struct member of type that must be typed as struct
foo_item. This struct member is used to store “next” pointers or other data structure specific
data.

» compare_func (funcptr) — Item comparison function, must have the following func-
tion signature: int function(const itemtype *, const itemtype*). This function

may be static if the container is only used in one file.

DECLARE_XXX_NONUNIQ(Z, type, field, compare_func)

Same as above, but allow adding multiple items to the container that compare as equal in compare_func.

dering between these items is undefined and depends on the container implementation.

itemtype *Z_add (struct Z_head*, itemtype *item)

Insert an item at the appropriate sorted position. If another item exists in the container that compares as equal
(compare_func() ==0), itemis not inserted and the already-existing item in the container is returned. Other-

wise, on successful insertion, NULL is returned.

For _NONUNIQ containers, this function always returns NULL since item can always be successfully added to

the container.

const itemtype *Z_const_£find(const struct Z_head*, const itemtype *ref)

itemtype *Z_£ind (struct Z_head*, const itemtype *ref)
Search the container for an item that compares equal to ref. If no equal item is found, return NULL.

This function is likely used with a temporary stack-allocated value for ref like so:

itemtype searchfor = { .foo = 123 };

itemtype *item = Z_findChead, &searchfor);

Note: The Z_find() function is only available for containers that contain unique items (i.e.
DECLARE_XXX_UNIQ.) This is because on a container with non-unique items, more than one item may compare

as equal to the item that is searched for.

const itemtype *Z_const_£find_gteq(const struct Z_head*, const itemtype *ref)

itemtype *Z_find_gteq(struct Z_head*, const itemtype *ref)
Search the container for an item that compares greater or equal to ref. See Z_find() above.

const itemtype *Z_const_find_1t (const struct Z_head*, const itemtype *ref)

itemtype *Z_£ind_1t (struct Z_head*, const itemtype *ref)
Search the container for an item that compares less than ref. See Z_find() above.

128 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

5.3.8 API for hash tables

DECLARE_HASH(Z, type, field, compare_func, hash_func)

Parameters
* HASH (1isttype)— Only HASH is currently available.

* Z (token) — Gives the name prefix that is used for the functions created for this instanti-
ation. DECLARE_XXX(foo, ...) gives struct foo_item, foo_add(), foo_count(),
etc. Note that this must match the value given in PREDECL_XXX(foo0).

* type (typename) — Specifies the data type of the items, e.g. struct item. Note that
struct must be added here, it is not automatically added.

» field (token) — References a struct member of type that must be typed as struct
foo_item. This struct member is used to store “next” pointers or other data structure specific
data.

» compare_func (funcptr) — Item comparison function, must have the following func-
tion signature: int function(const itemtype *, const itemtype*). This function
may be static if the container is only used in one file. For hash tables, this function is only

used to check for equality, the ordering is ignored.

» hash_func (funcptr) — Hash calculation function, must have the following function sig-
nature: uint32_t function(const itemtype *). The hash value for items stored in a
hash table is cached in each item, so this value need not be cached by the user code.

Warning: Items that compare as equal cannot be inserted. Refer to the notes about sorted structures in the
previous section.

void Z_init_size(struct Z_head*, size_t size)
Same as Z_init () but preset the minimum hash table to size.

Hash tables also support Z_add() and Z_find() with the same semantics as noted above. Z_find_gteq() and
Z_find_1t () are not provided for hash tables.

Hash table invariants

There are several ways to injure yourself using the hash table API.

First, note that there are two functions related to computing uniqueness of objects inserted into the hash table. There
is a hash function and a comparison function. The hash function computes the hash of the object. Our hash table
implementation uses chaining. This means that your hash function does not have to be perfect; multiple objects having
the same computed hash will be placed into a linked list corresponding to that key. The closer to perfect the hash
function, the better performance, as items will be more evenly distributed and the chain length will not be long on any
given lookup, minimizing the number of list operations required to find the correct item. However, the comparison
function must be perfect, in the sense that any two unique items inserted into the hash table must compare not equal.
At insertion time, if you try to insert an item that compares equal to an existing item the insertion will not happen and
hash_get () will return the existing item. However, this invariant must be maintained while the object is in the hash
table. Suppose you insert items A and B into the hash table which both hash to the same value 1234 but do not compare
equal. They will be placed in a chain like so:

1234 : A -> B

5.3. Type-safe containers 129

https://en.wikipedia.org/wiki/Hash_table#Separate_chaining_with_linked_lists

FRR Developer’s Manual, Release latest

Now suppose you do something like this elsewhere in the code:

:‘:A — :‘:B

Le. you copy all fields of B into A, such that the comparison function now says that they are equal based on their
contents. At this point when you look up B in the hash table, hash_get () will search the chain for the first item that
compares equal to B, which will be A. This leads to insidious bugs.

Warning: Never modify the values looked at by the comparison or hash functions after inserting an item into a
hash table.

A similar situation can occur with the hash allocation function. hash_get () accepts a function pointer that it will call
to get the item that should be inserted into the list if the provided item is not already present. There is a builtin function,
hash_alloc_intern, that will simply return the item you provided; if you always want to store the value you pass
to hash_get you should use this one. If you choose to provide a different one, that function must return a new item
that hashes and compares equal to the one you provided to hash_get (). If it does not the behavior of the hash table
is undefined.

Warning: Always make sure your hash allocation function returns a value that hashes and compares equal to the
item you provided to hash_get ().

Finally, if you maintain pointers to items you have inserted into a hash table, then before deallocating them you must
release them from the hash table. This is basic memory management but worth repeating as bugs have arisen from
failure to do this.

5.3.9 API for heaps

Heaps provide the same API as the sorted data structures, except:
¢ none of the find functions (Z_find (), Z_find_gteq() or Z_find_1t()) are available.

e iterating over the heap yields the items in semi-random order, only the first item is guaranteed to be in order and
actually the “lowest” item on the heap. Being a heap, only the rebalancing performed on removing the first item
(either through Z_pop () or Z_del ()) causes the new lowest item to bubble up to the front.

* all heap modifications are O(log n). However, cacheline efficiency and latency is likely quite a bit better than
with other data structures.

5.3.10 Atomic lists

atomlist.h provides an unsorted and a sorted atomic single-linked list. Since atomic memory accesses can be con-
siderably slower than plain memory accessses (depending on the CPU type), these lists should only be used where
necessary.

The following guarantees are provided regarding concurrent access:
* the operations are lock-free but not wait-free.

Lock-free means that it is impossible for all threads to be blocked. Some thread will always make progress,
regardless of what other threads do. (This even includes a random thread being stopped by a debugger in a
random location.)

130 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

Wait-free implies that the time any single thread might spend in one of the calls is bounded. This is not provided
here since it is not normally relevant to practical operations. What this means is that if some thread is hammering
a particular list with requests, it is possible that another thread is blocked for an extended time. The lock-free
guarantee still applies since the hammering thread is making progress.

» without a RCU mechanism in place, the point of contention for atomic lists is memory deallocation. As it is, a
rwlock is required for correct operation. The read lock must be held for all accesses, including reading the
list, adding items to the list, and removing items from the list. The write lock must be acquired and released
before deallocating any list element. If this is not followed, an use-after-free can occur as a MT race condition
when an element gets deallocated while another thread is accessing the list.

Note: The write lock does not need to be held for deleting items from the list, and there should not be any
instructions between the pthread_rwlock_wrlock and pthread_rwlock_unlock. The write lock is used as
a sequence point, not as an exclusion mechanism.

* insertion operations are always safe to do with the read lock held. Added items are immediately visible after the
insertion call returns and should not be touched anymore.

* when removing a particular (pre-determined) item, the caller must ensure that no other thread is attempting to
remove that same item. If this cannot be guaranteed by architecture, a separate lock might need to be added.

* concurrent pop calls are always safe to do with only the read lock held. This does not fall under the previous rule
since the pop call will select the next item if the first is already being removed by another thread.

Deallocation locking still applies. Assume another thread starts reading the list, but gets task-switched by the
kernel while reading the first item. pop will happily remove and return that item. If it is deallocated without
acquiring and releasing the write lock, the other thread will later resume execution and try to access the now-
deleted element.

* the list count should be considered an estimate. Since there might be concurrent insertions or removals in
progress, it might already be outdated by the time the call returns. No attempt is made to have it be correct
even for a nanosecond.

Overall, atomic lists are well-suited for MT queues; concurrent insertion, iteration and removal operations will work
with the read lock held.

Code shippets

Iteration:

struct item *i;

pthread_rwlock_rdlock(&itemhead_rwlock);
frr_each(itemlist, &itemhead, i) {
/* lock must remain held while iterating */

}
pthread_rwlock_unlock(&itemhead_rwlock);

Head removal (pop) and deallocation:

struct item *i;

pthread_rwlock_rdlock(&itemhead_rwlock);
i = itemlist_pop(&itemhead);

(continues on next page)

5.3. Type-safe containers 131

FRR Developer’s Manual, Release latest

(continued from previous page)

pthread_rwlock_unlock(&itemhead_rwlock);

/% 1 might still be visible for another thread doing an
* frr_each() (but won't be returned by another pop()) */

pthread_rwlock_wrlock(&itemhead_rwlock);
pthread_rwlock_unlock(&itemhead_rwlock);
/% 1 now guaranteed to be gone from the list.

* note nothing between wrlock() and unlock() */
XFREE(MTYPE_ITEM, i);

5.3.11 FAQ

What are the semantics of const in the container APIs? const pointers to list heads and/or items are interpreted
to mean that both the container itself as well as the data items are read-only.

Why is it PREDECL + DECLARE instead of DECLARE + DEFINE? The rule is that a DEFINE must be in a .c file, and
linked exactly once because it defines some kind of global symbol. This is not the case for the data structure
macros; they only define static symbols and it is perfectly fine to include both PREDECL and DECLARE in a
header file. It is also perfectly fine to have the same DECLARE statement in 2 .c files, but only if the macro
arguments are identical. Maybe don’t do that unless you really need it.

5.3.12 FRR lists

Todo: document

5.3.13 BSD lists

Todo: refer to external docs

5.4 Logging

One of the most frequent decisions to make while writing code for FRR is what to log, what level to log it at, and when
to log it. Here is a list of recommendations for these decisions.

132 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

5.4.1 printfrr()

printfrr() is FRR’s modified version of print£(), designed to make life easier when printing nontrivial datastruc-
tures. The following variants are available:

ssize_t snprintfrr (char *buf, size_t len, const char *fmt, ...)

ssize_t vsnprintfrr (char *buf, size_t len, const char *fmt, va_list)
These correspond to snprintf/vsnprintf. If you pass NULL for buf or O for len, no output is written but the
return value is still calculated.

The return value is always the full length of the output, unconstrained by len. It does not include the terminating
\0 character. A malformed format string can result in a -1 return value.

ssize_t csnprintfrr (char *buf, size_t len, const char *fmt, ...)

ssize_t vesnprintfrr (char *buf, size_t len, const char *fmt, va_list)
Same as above, but the c stands for “continue” or “concatenate”. The output is appended to the string instead of
overwriting it.

char *asprintfrr (struct memtype *mt, const char *fmt, ...)

char *vasprintfrr (struct memtype *mt, const char *fmt, va_list)
These functions allocate a dynamic buffer (using MTYPE m¢) and print to that. If the format string is malformed,
they return a copy of the format string, so the return value is always non-NULL and always dynamically allocated
with mt.

char *asnprintfrr (struct memtype *mt, char *buf, size_t len, const char *fmt, ...)

char *vasnprintfrr (struct memtype *mt, char *buf, size_t len, const char *fmt, va_list)
This variant tries to use the static buffer provided, but falls back to dynamic allocation if it is insufficient.

The return value can be either buf or a newly allocated string using mz. You MUST free it like this:

char *ret = asnprintfrr(MTYPE_FOO, buf, sizeof(buf), ...);
if (ret != buf)
XFREE(MTYPE_F00O, ret);

ssize_t bprintfrr (struct fbuf *fb, const char *fmt, ...)

ssize_t vbprintfrr (struct fbuf *fb, const char *fmt, va_list)
These are the “lowest level” functions, which the other variants listed above use to implement their functionality
on top. Mainly useful for implementing printfrr extensions since those get a struct fbuf * to write their
output to.

FMT_NSTD (expr)
This macro turns off/on format warnings as needed when non-ISO-C compatible printfrr extensions are used
(e.g. %.*p or %Ld.):

vty_out(vty, "standard compatible %pI4\n", &addr);
FMT_NSTD(vty_out (vty, "non-standard %-47.*pHX\n", (int)len, buf));

When the frr-format plugin is in use, this macro is a no-op since the frr-format plugin supports all printfrr ex-
tensions. Since the FRR CI includes a system with the plugin enabled, this means format errors will not slip by
undetected even with FMT_NSTD.

5.4. Logging 133

FRR Developer’s Manual, Release latest

Note: printfrr() does not support the %n format.

AS-Safety

printfrr() are AS-Safe under the following conditions:

 the [v]as[n]printfrr variants are not AS-Safe (allocating memory)

* floating point specifiers are not AS-Safe (system printf is used for these)

* the positional %1$d syntax should not be used (8 arguments are supported while AS-Safe)

* extensions are only AS-Safe if their printer is AS-Safe

5.4.2 printfrr Extensions

printfrr() format strings can be extended with suffixes after %p or %d. Printf features like field lengths can be
used normally with these extensions, e.g. %-15pI4 works correctly, except if the extension consumes the width or
precision. Extensions that do so are listed below as %*pXX rather than %pXX.

The extension specifier after %p or %d is always an uppercase letter; by means of established pattern uppercase letters
and numbers form the type identifier which may be followed by lowercase flags.

You can grep the FRR source for printfrr_ext_autoreg to see all extended printers and what exactly they do. More
printers are likely to be added as needed/useful, so the list here may be outdated.

Note: The zlog_*/flog_* and vty_out functions all use printfrr internally, so these extensions are available there.
However, they are not available when calling snprintf directly. You need to call snprintfrr instead.

Networking data types

%pI4 (struct in_addr *, in_addr_t *)

1.2.3.4

%pl4s: * — print star instead of 0.0.0.0 (for multicast)
%pI6 (struct in6_addr *)

fe80::1234

%pl6s: * — print star instead of :: (for multicast)

%pEA (struct ethaddr *)
01:23:45:67:89:ab

%pIA (struct ipaddr *)
1.2.3.4/ fe80::1234

%pIAs: — print star instead of zero address (for multicast)

%pFX (struct prefix *)
1.2.3.0/24/ fe80::1234/64

This accepts the following types:

e prefix

134

Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

e prefix_ipv4
e prefix_ipv6
e prefix_eth
e prefix_evpn
e prefix_f£s
It does not accept the following types:
e prefix_ls
e prefix_rd
e prefix_sg (use %pPSG4)
* prefixptr (dereference to get prefix)
» prefixconstptr (dereference to get prefix)
Options:
%pFXh: (addressonly) 1.2.3.0/ fe80::1234

%pPSG4 (struct prefix_sg *)
(*,1.2.3.4)

This is (S,G) output for use in zebra. (Note prefix_sg is not a prefix “subclass” like the other prefix_* structs.)

%pSU (union sockunion *)
%pSU: 1.2.3.4/ fe80::1234

%pSUs: 1.2.3.4/ £fe80::1234%89 (adds IPv6 scope ID as integer)
%pSUp: 1.2.3.4:567/ [fe80::1234]:567 (adds port)
%pSUps: 1.2.3.4:567/ [fe80::1234%89]:567 (adds port and scope ID)

%pRN (struct route_node *, struct bgp_node *, struct agg_node *)
192.168.1.0/24 (dst-only node)

2001:db8::/32 from fe80::/64 (SADR node)

%pNH (struct nexthop *)
%pNHvv: via 1.2.3.4, eth® — verbose zebra format

%pNHv: 1.2.3.4, via eth® — slightly less verbose zebra format
%pNHs: 1.2.3.4 if 15— same as nexthop2str()

%pNHcg: 1.2.3.4 — compact gateway only

%pNHci: eth® — compact interface only

%dPF (int)
AF_INET

Prints an AF_*/ PF_* constant. PF is used here to avoid confusion with AFI constants, even though the FRR
codebase prefers AF_INET over PF_INET & co.

%dSO (int)
SOCK_STREAM

5.4. Logging 135

FRR Developer’s Manual, Release latest

Time/interval formats

%pTS (struct timespec *)

%pTV (struct timeval *)

9pTT (time_t *)

Above 3 options internally result in the same code being called, support the same flags and produce equal output
with one exception: %¥pTT has no sub-second precision and the formatter will never print a (nonsensical) . 000.

Exactly one of I, M or R must immediately follow after TS/TV/TT to specify whether the input is an interval,
monotonic timestamp or realtime timestamp:

%pTVI: input is an interval, not a timestamp. Print interval.

%pTVIs: input is an interval, convert to wallclock by subtracting it from current time (i.e. interval has passed
since.)

%pTVIu: input is an interval, convert to wallclock by adding it to current time (i.e. until interval has passed.)

%pTVM - input is a timestamp on CLOCK_MONOTONIC, convert to wallclock time (by grabbing current
CLOCK_MONOTONIC and CLOCK_REALTIME and doing the math) and print calendaric date.

%pTVMs - input is a timestamp on CLOCK_MONOTONIC, print interval since that timestamp (elapsed.)
%pTVMu - input is a timestamp on CLOCK_MONOTONIC, print interval until that timestamp (deadline.)
%pTVR - input is a timestamp on CLOCK_REALTIME, print calendaric date.

%pTVRs - input is a timestamp on CLOCK_REALTIME, print interval since that timestamp.

%pTVRu - input is a timestamp on CLOCK_REALTIME, print interval until that timestamp.

%pTVA - reserved for CLOCK_TAI in case a PTP implementation is interfaced to FRR. Not currently imple-
mented.

Note: If %pTVRs or %pTVRu are used, this is generally an indication that a CLOCK_MONOTONIC timestamp
should be used instead (or added in parallel.) CLOCK_REALTIME might be adjusted by NTP, PTP or similar
procedures, causing bogus intervals to be printed.

%pTVM on first look might be assumed to have the same problem, but on closer thought the assumption is always
that current system time is correct. And since a CLOCK_MONOTONIC interval is also quite safe to assume
to be correct, the (past) absolute timestamp to be printed from this can likely be correct even if it doesn’t match
what CLOCK_REALTIME would have indicated at that point in the past. This logic does, however, not quite
work for future times.

Generally speaking, almost all use cases in FRR should (and do) use CLOCK_MONOTONIC (through
monotime().)

Flags common to printing calendar times and intervals:
p: include spaces in appropriate places (depends on selected format.)

%p.3TV...: specify sub-second resolution (use with FMT_NSTD to suppress gcc warning.) As noted above, %pTT
will never print sub-second digits since there are none. Only some formats support printing sub-second digits
and the default may vary.

The following flags are available for printing calendar times/dates:

(no flag): Sat Jan 1 00:00:00 2022 - print output from ctime(), in local time zone. Since FRR does not
currently use/enable locale support, this is always the C locale. (Locale support getting added is unlikely for the
time being and would likely break other things worse than this.)

136

Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

i: 2022-01-01T00:00:00.123 - ISO8601 timestamp in local time zone (note there is no Z or +00: 00 suffix.)
Defaults to millisecond precision.

ip: 2022-01-01 00:00:00.123 - use readable form of ISO8601 with space instead of T separator.
The following flags are available for printing intervals:

(no flag): 9w9d09:09:09.123 - does not match any preexisting format; added because it does not lose precision
(like t) for longer intervals without printing huge numbers (like h/m). Defaults to millisecond precision. The
week/day fields are left off if they’re zero, p adds a space after the respective letter.

t: 9w9d09h, 9d09%h09m, 09:09:09 - this replaces frrtime_to_interval(). p adds spaces after
week/day/hour letters.

d: print decimal number of seconds. Defaults to millisecond precision.

x / tx/ dx: Like no flag / t / d, but print - for zero or negative intervals (for use with unset timers.)

h: 09:09:09

hx: 09:09:09, --:--:-- - this replaces pim_time_timer_to_hhmmss().
m: 09:09

mx: 09:09, --:-- - this replaces pim_time_timer_to_mmss().

FRR library helper formats

%pTH (struct thread *)
Print remaining time on timer thread. Interval-printing flag characters listed above for %pTV can be added, e.g.
%pTHtx.

NULL pointers are printed as -.

%pTHD (struct thread *)
Print debugging information for given thread. Sample output:

{(thread *)NULL}

{(thread *)0x55a3b5818910 arg=0x55a3b5827c50 timer r=7.824 mld_t_query() &mld_
—ifp->t_query from pimd/pim6_mld.c:1369}
{(thread *)0x55a3b5827230 arg=0x55a3b5827c50 read fd=16 mld_t_recv() &mld_

—ifp->t_recv from pimd/pim6_mld.c:1186}

(The output is aligned to some degree.)

FRR daemon specific formats

The following formats are only available in specific daemons, as the code implementing them is part of the daemon,
not the library.

5.4. Logging 137

FRR Developer’s Manual, Release latest

zebra

%pZN (struct route_node *)
Print information for a RIB node, including zebra-specific data.

::/0 src fe80::/64 (MRIB) (%pZN)
1234 (%pZNt - table number)

bgpd

%pBD (struct bgp_dest *)
Print prefix for a BGP destination.
fe80::1234/64

%pBP (struct peer *)
192.168.1.1(leafl. frrouting.org)

Print BGP peer’s IP and hostname together.

pimd/pim6d

%pPA (pim_addr *)
Format IP address according to IP version (pimd vs. pim6d) being compiled.

fe80::1234/10.0.0.1
* (%pPAs - replace 0.0.0.0/:: with star)

%pSG (pim_sgaddr *)
Format S,G pair according to IP version (pimd vs. pim6d) being compiled. Braces are included.

(*,224.0.0.0)

General utility formats

%m (no argument)
Permission denied

Prints strerror (errno). Does not consume any input argument, don’t pass errno!

(This is a GNU extension not specific to FRR. FRR guarantees it is available on all systems in printfrr, though
BSDs support it in printf too.)

%pSQ (char *)
([S]tring [Q]uote.) Like %s, but produce a quoted string. Options:

n - treat NULL as empty string instead.

q - include "" quotation marks. Note: NULL is printed as (null), not " (null)" unless n is used too.
This is intentional.

s - use escaping suitable for RFC5424 syslog. This means] is escaped too.

If a length is specified (%*pSQ or %. *pSQ), null bytes in the input string do not end the string and are just printed
as \x00.

138 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

%pSE (char *)
([S]tring [E]scape.) Like %s, but escape special characters. Options:

n - treat NULL as empty string instead.
Unlike %pSQ, this escapes many more characters that are fine for a quoted string but not on their own.

If a length is specified (%*pSE or %. *pSE), null bytes in the input string do not end the string and are just printed
as \x00.

%pVA (struct va_format *)
Recursively invoke printfrr, with arguments passed in through:

struct va_format

const char *fmt
Format string to use for the recursive printfrr call.
va_list *va
Formatting arguments. Note this is passed as a pointer, not - as in most other places - a direct struct

reference. Internally uses va_copy () so repeated calls can be made (e.g. for determining output
length.)

%pFB (struct fouf *)
Insert text from a struct fbuf *,i.e. the output of a call to bprintfrr().

Y%*pHX (void *, char *, unsigned char *)
%pHX: 12 34 56 78

%pHXc: 12:34:56:78 (separate with [c]olon)
%pHXn: 12345678 (separate with [n]othing)

Insert hexdump. This specifier requires a precision or width to be specified. A precision (%. *pHX) takes prece-
dence, but generates a compiler warning since precisions are undefined for %p in ISO C. If no precision is given,
the width is used instead (and normal handling of the width is suppressed).

Note that width and precision are int arguments, not size_t. Use like:

char *buf;
size_t len;

snprintfrr(out, sizeof(out), "... %*pHX ...", (int)len, buf);

/* with padding to width - would generate a warning due to %.*p */
FMT_NSTD(snprintfrr(out, sizeof(out), "... %-47.*pHX ...", (int)len, buf));

%*pHS (void *, char *, unsigned char *)
%pHS: hex . dump

This is a complementary format for %*pHX to print the text representation for a hexdump. Non-printable charac-
ters are replaced with a dot.

5.4. Logging 139

FRR Developer’s Manual, Release latest

Integer formats

Note: These formats currently only exist for advanced type checking with the frr-format GCC plugin. They should
not be used directly since they will cause compiler warnings when used without the plugin. Use with FMT_NSTD if
necessary.

Itis possible ISO C23 may introduce another format for these, possibly %w64d discussed in JTC 1/SC 22/WG 14/N2680.

YoLu (uint64_t)
12345

%Ld (int64_t)
-12345

5.4.3 Log levels

Errors and warnings

If it is something that the user will want to look at and maybe do something, it is either an error or a warning.

We’re expecting that warnings and errors are in some way visible to the user (in the worst case by looking at the log
after the network broke, but maybe by a syslog collector from all routers.) Therefore, anything that needs to get the
user in the loop—and only these things—are warnings or errors.

Note that this doesn’t necessarily mean the user needs to fix something in the FRR instance. It also includes when we
detect something else needs fixing, for example another router, the system we’re running on, or the configuration. The
common point is that the user should probably do something.

Deciding between a warning and an error is slightly less obvious; the rule of thumb here is that an error will cause
considerable fallout beyond its direct effect. Closing a BGP session due to a malformed update is an error since all
routes from the peer are dropped; discarding one route because its attributes don’t make sense is a warning.

This also loosely corresponds to the kind of reaction we’re expecting from the user. An error is likely to need immediate
response while a warning might be snoozed for a bit and addressed as part of general maintenance. If a problem will
self-repair (e.g. by retransmits), it should be a warning—unless the impact until that self-repair is very harsh.

Examples for warnings:

* a BGP update, LSA or LSP could not be processed, but operation is proceeding and the broken pieces are likely
to self-fix later

¢ some kind of controller cannot be reached, but we can work without it

* another router is using some unknown or unsupported capability
Examples for errors:

* dropping a BGP session due to malformed data

* a socket for routing protocol operation cannot be opened

¢ desynchronization from network state because something went wrong

o everything that we as developers would really like to be notified about, i.e. some assumption in the code isn’t
holding up

140 Chapter 5. Library Facilities (libfrr)

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2680.pdf

FRR Developer’s Manual, Release latest

Informational messages

Anything that provides introspection to the user during normal operation is an info message.

This includes all kinds of operational state transitions and events, especially if they might be interesting to the user
during the course of figuring out a warning or an error.

By itself, these messages should mostly be statements of fact. They might indicate the order and relationship in which
things happened. Also covered are conditions that might be “operational issues” like a link failure due to an unplugged
cable. If it’s pretty much the point of running a routing daemon for, it’s not a warning or an error, just business as usual.

The user should be able to see the state of these bits from operational state output, i.e. show interface or show foobar
neighbors. The log message indicating the change may have been printed weeks ago, but the state can always be viewed.
(If some state change has an info message but no “show” command, maybe that command needs to be added.)

Examples:
* all kinds of up/down state changes
— interface coming up or going down
— addresses being added or deleted
— peers and neighbors coming up or going down
* rejection of some routes due to user-configured route maps

* backwards compatibility handling because another system on the network has a different or smaller feature set

Note: The previously used notify priority is replaced with info in all cases. We don’t currently have a well-defined
use case for it.

Debug messages and asserts

Everything that is only interesting on-demand, or only while developing, is a debug message. It might be interesting
to the user for a particularly evasive issue, but in general these are details that an average user might not even be able
to make sense of.

Most (or all?) debug messages should be behind a debug foobar category switch that controls which subset of these
messages is currently interesting and thus printed. If a debug message doesn’t have such a guard, there should be a
good explanation as to why.

Conversely, debug messages are the only thing that should be guarded by these switches. Neither info nor warning or
error messages should be hidden in this way.

Asserts should only be used as pretty crashes. We are expecting that asserts remain enabled in production builds, but
please try to not use asserts in a way that would cause a security problem if the assert wasn’t there (i.e. don’t use them
for length checks.)

The purpose of asserts is mainly to help development and bug hunting. If the daemon crashes, then having some more
information is nice, and the assert can provide crucial hints that cut down on the time needed to track an issue. That
said, if the issue can be reasonably handled and/or isn’t going to crash the daemon, it shouldn’t be an assert.

For anything else where internal constraints are violated but we’re not breaking due to it, it’s an error instead (not a
debug.) These require “user action” of notifying the developers.

Examples:
* mismatched prev/next pointers in lists

 some field that is absolutely needed is NULL

5.4. Logging 141

FRR Developer’s Manual, Release latest

* any other kind of data structure corruption that will cause the daemon to crash sooner or later, one way or another

5.4.4 Thread-local buffering

The core logging code in 1ib/zlog. c allows setting up per-thread log message buffers in order to improve logging
performance. The following rules apply for this buffering:

* Only messages of priority DEBUG or INFO are buffered.

* Any higher-priority message causes the thread’s entire buffer to be flushed, thus message ordering is preserved
on a per-thread level.

 There is no guarantee on ordering between different threads; in most cases this is arbitrary to begin with since the
threads essentially race each other in printing log messages. If an order is established with some synchronization
primitive, add calls to zIog_tls_buffer_flush().

» The buffers are only ever accessed by the thread they are created by. This means no locking is necessary.

Both the main/default thread and additional threads created by frr_pthread_new() with the default frr_run()
handler will initialize thread-local buffering and call zIog_tls_buffer_flush() when idle.

If some piece of code runs for an extended period, it may be useful to insert calls to zlog_tIs_buffer_flush() in
appropriate places:

void zlog_tls_buffer_£flush(void)
Write out any pending log messages that the calling thread may have in its buffer. This function is safe to call
regardless of the per-thread log buffer being set up / in use or not.

When working with threads that do not use the thread_master event loop, per-thread buffers can be managed with:

void zlog_tls_buffer_init (void)
Set up thread-local buffering for log messages. This function may be called repeatedly without adverse effects,
but remember to call zlog_tls_buffer_ fini() at thread exit.

Warning: If this function is called, but zIog_tls_buffer_flush() is not used, log message output will
lag behind since messages will only be written out when the buffer is full.

Exiting the thread without calling zIog_tls_buffer_fini() will cause buffered log messages to be lost.

void zlog_tls_buffer_£fini (void)
Flush pending messages and tear down thread-local log message buffering. This function may be called repeat-
edly regardless of whether zlog_tIs_buffer_init() was ever called.

5.4.5 Log targets

The actual logging subsystem (in 1ib/zlog.c) is heavily separated from the actual log writers. It uses an atomic
linked-list (zlog_targets) with RCU to maintain the log targets to be called. This list is intended to function as “backend”
only, it is not used for configuration.

Logging targets provide their configuration layer on top of this and maintain their own capability to enumerate and
store their configuration. Some targets (e.g. syslog) are inherently single instance and just stuff their config in global
variables. Others (e.g. file/fd output) are multi-instance capable. There is another layer boundary here between these
and the VTY configuration that they use.

142 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

Basic internals

struct zlog_target
This struct needs to be filled in by any log target and then passed to zlog_target_replace(). After it has

been registered, RCU semantics apply. Most changes to associated data should make a copy, change that, and
then replace the entire struct.

Additional per-target data should be “appended” by embedding this struct into a larger one, for use with con-
tainerof{(), and zlog_target_clone() and zlog_target_free() should be used to allocate/free the entire
container struct.

Do not use this structure to maintain configuration. It should only contain (a copy of) the data needed to perform
the actual logging. For example, the syslog target uses this:

struct zlt_syslog {
struct zlog_target zt;
int syslog_facility;
b

static void zlog_syslog(struct zlog_target *zt, struct zlog_msg *msgs[], size_t.

—nmsgs)

{
struct zlt_syslog *zte = container_of(zt, struct zlt_syslog, zt);
size_t i;

for (i = 0; i < nmsgs; i++)
if (zlog_msg_prio(msgs[i]) <= zt->prio_min)
syslog(zlog_msg_prio(msgs[i]) | zte->syslog_facility, "%s",
zlog_msg_text(msgs[i], NULL));

struct zlog_target *zlog_target_clone (struct memitype *mt, struct zlog_target *oldzt, size_t size)
Allocates a logging target struct. Note that the o1dzt argument may be NULL to allocate a “from scratch”. If
oldzt is not NULL, the generic bits in zlog_target are copied. Target specific bits are not copied.

struct zlog_target *zlog_target_replace(struct zlog_target *oldzt, struct zlog_target *newzt)
Adds, replaces or deletes a logging target (either o1ldzt or newzt may be NULL.)

Returns oldzt for freeing. The target remains possibly in use by other threads until the RCU cycle ends. This
implies you cannot release resources (e.g. memory, file descriptors) immediately.

The replace operation is not atomic; for a brief period it is possible that messages are delivered on both oldzt
and newzt.

Warning: oldzt must remain functional until the RCU cycle ends.

void zlog_target_free (struct memtype *mt, struct zlog_target *zt)
Counterpart to zlog_target_clone(), frees a target (using RCU.)

void (*zlog_target.logfn)(struct zlog_target *zt, struct zlog_msg *msgs[], size_t nmsg)
Called on a target to deliver “normal” logging messages. msgs is an array of opaque structs containing the actual
message. Use zlog_msg_* functions to access message data (this is done to allow some optimizations, e.g. lazy
formatting the message text and timestamp as needed.)

Note: logfn() must check each individual message’s priority value against the configured prio_min. While

5.4. Logging 143

FRR Developer’s Manual, Release latest

the prio_min field is common to all targets and used by the core logging code to early-drop unneeded log
messages, the array is not filtered for each logfn() call.

void (*zlog_target.logfn_sigsafe)(struct zlog_target *zt, const char *text, size_t len)
Called to deliver “exception” logging messages (i.e. SEGV messages.) Must be Async-Signal-Safe (may not
allocate memory or call “complicated” libc functions.) May be NULL if the log target cannot handle this.

Standard targets
lib/zlog_targets.c provides the standard file / fd / syslog targets. The syslog target is single-instance while file /
fd targets can be instantiated as needed. There are 3 built-in targets that are fully autonomous without any config:

* startup logging to stderr, until either zlog_startup_end() or zlog_aux_init() is called.

* stdout logging for non-daemon programs using zlog_aux_init ()

e crashlogs written to /var/tmp/frr.daemon.crashlog

The regular CLI/command-line logging setup is handled by 1ib/log_vty.c which makes the appropriate instantia-
tions of syslog / file / fd targets.

Todo: zlog_startup_end() should do an explicit switchover from startup stderr logging to configured logging.
Currently, configured logging starts in parallel as soon as the respective setup is executed. This results in some duplicate

logging.

5.5 Introspection (xrefs)

The FRR library provides an introspection facility called “xrefs.” The intent is to provide structured access to annotated
entities in the compiled binary, such as log messages and thread scheduling calls.

5.5.1 Enabling and use

Support for emitting an xref is included in the macros for the specific entities, e.g. z1og_info() contains the relevant
statements. The only requirement for the system to work is a GNU compatible linker that supports section start/end
symbols. (The only known linker on any system FRR supports that does not do this is the Solaris linker.)

To verify xrefs have been included in a binary or dynamic library, run readelf -n binary. For individual object
files, it’s readelf -S object.o | grep xref_array instead.

5.5.2 Structure and contents
As a slight improvement to security and fault detection, xrefs are divided into a const struct xref *andan optional
struct xrefdata *. The required const part contains:

enum xref_type xref.type
Identifies what kind of object the xref points to.

int 1ine

const char *xref.file

144 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

const char *xref. func
Source code location of the xref. func will be <global> for xrefs outside of a function.

struct xrefdata *xref.xrefdata
The optional writable part of the xref. NULL if no non-const part exists.

The optional non-const part has:

const struct xref *xrefdata.xref
Pointer back to the constant part. Since circular pointers are close to impossible to emit from inside a function
body’s static variables, this is initialized at startup.

char xrefdata.uid[16]
Unique identifier, see below.

const char *xrefdata.hashstr

uint32_t xrefdata.hashu32([2]
Input to unique identifier calculation. These should encompass all details needed to make an xref unique. If
more than one string should be considered, use string concatenation for the initializer.

1

Both structures can be extended by embedding them in a larger type-specific struct, e.g. struct xref_logmsg *

5.5.3 Unique identifiers
All xrefs that have a writable struct xrefdata * part are assigned an unique identifier, which is formed as base32
(crockford) SHA256 on:

* the source filename

e the hashstr field

* the hashu32 fields

Note: Function names and line numbers are intentionally not included to allow moving items within a file without
affecting the identifier.

For running executables, this hash is calculated once at startup. When directly reading from an ELF file with external
tooling, the value must be calculated when necessary.

The identifiers have the form AXXXX-XXXXX where X is -9, A-Z except I,L,0,Uand AisG-Z except I,L,0,U
(i.e. the identifiers always start with a letter.) When reading identifiers from user input, I and L should be replaced
with 1 and 0 should be replaced with 8. There are 49 bits of entropy in this identifier.

5.5.4 Underlying machinery

Xrefs are nothing other than global variables with some extra glue to make them possible to find from the outside by
looking at the binary. The first non-obvious part is that they can occur inside of functions, since they’re defined as
static. They don’t have a visible name — they don’t need one.

To make finding these variables possible, another global variable, a pointer to the first one, is created in the same
way. However, it is put in a special ELF section through __attribute__((section("xref_array™))). This is the
section you can see with readelf.

Finally, on the level of a whole executable or library, the linker will stuff the individual pointers consecutive to each
other since they’re in the same section — hence the array. Start and end of this array is given by the linker-autogenerated
__start_xref_array and __stop_xref_array symbols. Using these, both a constructor to run at startup as well
as an ELF note are created.

5.5. Introspection (xrefs) 145

FRR Developer’s Manual, Release latest

The ELF note is the entrypoint for externally retrieving xrefs from a binary without having to run it. It can be found by
walking through the ELF data structures even if the binary has been fully stripped of debug and section information.
SystemTap’s SDT probes & LTTng’s trace points work in the same way (though they emit 1 note for each probe, while
xrefs only emit one note in total which refers to the array.) Using xrefs does not impact SystemTap or LTTng, the notes
have identifiers they can be distinguished by.

The ELF structure of a linked binary (library or executable) will look like this:

$ readelf --wide -1 -n lib/.libs/libfrr.so
E1f file type is DYN (Shared object file)
Entry point 0x67d21

There are 12 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg.
—Align

PHDR 0x000040 0x0000000000000040 0x0000000000000040 0x0002a0 0x0002a0 R 0x8

INTERP 0x125560 0x0000000000125560 0x0000000000125560 0x00001c 0x00001c R .
—0x10

[Requesting program interpreter: /1ib64/1d-linux-x86-64.s0.2]

LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x02aff® 0x02aff®@ R .
—0x1000

LOAD 0x02b000 0x000000000002bOOO 0x000000000002HOO0 0x0b2889 0x0b2889 R E.
—0x1000

LOAD 0x0de000 0x00000000000dc000 0xO00000000000dc000 0x070048 0x070048 R .
—0x1000

LOAD 0x14e428 0x000000000014f428 0x0000000000141428 0x00fb70 0x01a2b8 RW .
—0x1000

DYNAMIC 0x157a40 0x0000000000158a40 0x0000000000158a40 0x000270 0x000270 RW 0x8

NOTE 0x0002e0 0x00000000000002e0 0x00000000000002¢0 0x00004c 0x00004c R 0x4

TLS 0x14e428 0x000000000014f428 0x000000000014f428 0x000000 0x000008 R 0x8

GNU_EH_FRAME 0x12557c 0x000000000012557c 0x000000000012557c 0x00819c 0x00819c R 0x4

GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000 RW ..
—0x10

GNU_RELRO 0x14e428 0x000000000014£428 0x000000000014£f428 0x009bd8 0x009bd8 R 0x1
...
Displaying notes found in: .note.gnu.build-id

Owner Data size Description

GNU 0x00000014 NT_GNU_BUILD_ID (unique build ID bitstring) .

< Build ID: 6alf66be38b523095ebd6ecl3cc15820cede903d

Displaying notes found in:

Owner
FRRouting

Data size
0x00000010

.note.FRR

Description
Unknown note type:

—data: 6¢c eb 15 00 00 00 00 00 74 ec 15 00 00 00 00 00

(0x46455258)

description..

Where Ox15ebb6c...0x15ec74 are the offsets (relative to the note itself) where the xref array is in the file. Also note the
owner is clearly marked as “FRRouting” and the type is “XREF” in hex.

For SystemTap’s use of ELF notes, refer to https://libstapsdt.readthedocs.io/en/latest/how-it-works/internals.html as

an entry point.

146

Chapter 5. Library Facilities (libfrr)

https://libstapsdt.readthedocs.io/en/latest/how-it-works/internals.html

FRR Developer’s Manual, Release latest

Note: Due to GCC bug 41091, the “xref_array” section is not correctly generated for C++ code when compiled by
GCC. A workaround is present for runtime functionality, but to extract the xrefs from a C++ source file, it needs to be
built with clang (or a future fixed version of GCC) instead.

5.5.5 Extraction tool

The FRR source contains a matching tool to extract xref data from compiled ELF binaries in python/xrelfo.py.
This tool uses CPython extensions implemented in clippy and must therefore be executed with that.

xrelfo.py processes input from one or more ELF file (.0, .so, executable), libtool object (.lo, .la, executable wrapper
script) or JSON (output from xrelfo.py) and generates an output JSON file. During standard FRR build, it is invoked
on all binaries and libraries and the result is combined into frr. json.

ELF files from any operating system, CPU architecture and endianness can be processed on any host. Any issues with
this are bugs in xrelfo.py (or clippy’s ELF code.)

xrelfo.py also performs some sanity checking, particularly on log messages. The following options are available:

-0 OUTPUT
Filename to write JSON output to. As a convention, a .xref filename extension is used.

-Wlog-format
Performs extra checks on log message format strings, particularly checks for \t and \n characters (which should
not be used in log messages).

-Wlog-args
Generates cleanup hints for format string arguments where printfrr () extensions could be used, e.g. replacing
inet_ntoa with %pI4.

--profile
Runs the Python profiler to identify hotspots in the xrelfo.py code.

xrelfo.py uses information about C structure definitions saved in python/xrefstructs. json. This file is included
with the FRR sources and only needs to be regenerated when some of the struct xref_* definitions are changed
(which should be almost never). The file is written by python/tiabwarfo.py, which uses pahole to extract the
necessary data from DWARF information.

5.6 Locking

FRR ships two small wrappers around pthread_mutex_lock() / pthread_mutex_unlock. Use #include
"frr_pthread.h" to get these macros.

frr_with_mutex(mutex)
(With pthread_mutex_t *mutex.)

Begin a C statement block that is executed with the mutex locked. Any exit from the block (break, return,
goto, end of block) will cause the mutex to be unlocked:

int somefunction(int option)

{
frr_with_mutex(&my_mutex) {
/* mutex will be locked */

if (!option)

(continues on next page)

5.6. Locking 147

FRR Developer’s Manual, Release latest

(continued from previous page)

/* mutex will be unlocked before return */
return -1;

if (something(option))
/* mutex will be unlocked before goto */
goto out_err;

somethingelse();

/* mutex will be unlocked at end of block */
}

return 0;

out_err:
somecleanup();
return -1;

}

This is a macro that internally uses a for loop. It is explicitly acceptable to use break to get out of the block.
Even though a single statement works correctly, FRR coding style requires that this macro always be used with
a{ ... }block.

frr_mutex_lock_autounlock (mutex)
(With pthread_mutex_t *mutex.)

Lock mutex and unlock at the end of the current C statement block:

int somefunction(int option)

{
frr_mutex_lock_autounlock (&my_mutex) ;
/* mutex will be locked */

if (error)
/* mutex will be unlocked before return */
return -1;

/* mutex will be unlocked before return */
return 0;

}

This is a macro that internally creates a variable with a destructor. When the variable goes out of scope (i.e. the
block ends), the mutex is released.

Warning: This macro should only used when frr_with_mutex() would result in excessively/weirdly
nested code. This generally is an indicator that the code might be trying to do too many things with
the lock held. Try any possible venues to reduce the amount of code covered by the lock and move to
frr _with_mutex().

148 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

5.7 Hooks

Libfrr provides type-safe subscribable hook points where other pieces of code can add one or more callback functions.
“type-safe” in this case applies to the function pointers used for subscriptions. The implementations checks (at compile-
time) whether a callback to be added has the appropriate function signature (parameters) for the hook.

Example:

Listing 3: mydaemon.h

#include "hook.h"
DECLARE_HOOK (some_update_event, (struct eventinfo *info), (info));

Listing 4: mydaemon.c

#include "mydaemon.h"
DEFINE_HOOK (some_update_event, (struct eventinfo *info), (info));

hook_call(some_update_event, info);

Listing 5: mymodule.c

#include "mydaemon.h"
static int event_handler(struct eventinfo *info);

hook_register(some_update_event, event_handler);

Do not use parameter names starting with “hook”, these can collide with names used by the hook code itself.

5.7.1 Return values
Callbacks to be placed on hooks always return “int” for now; hook_call will sum up the return values from each called
function. (The default is O if no callbacks are registered.)

There are no pre-defined semantics for the value, in most cases it is ignored. For success/failure indication, O should
be success, and handlers should make sure to only return O or 1 (not -1 or other values).

There is no built-in way to abort executing a chain after a failure of one of the callbacks. If this is needed, the hook can
use an extra bool *aborted argument.

5.7.2 Priorities

Hooks support a “priority” value for ordering registered calls relative to each other. The priority is a signed integer
where lower values are called earlier. There are also “Koohs”, which is hooks with reverse priority ordering (for
cleanup/deinit hooks, so you can use the same priority value).

Recommended priority value ranges are:

Range Usage

-999 ... 0... 999 | main executable / daemon, or library

-1999 ... -1000 modules registering calls that should run before the daemon’s bits

1000 ... 1999 modules’ calls that should run after daemon’s (includes default value: 1000)

5.7. Hooks 149

FRR Developer’s Manual, Release latest

Note: the default value is 1000, based on the following 2 expectations:

* most hook_register() usage will be in loadable modules

* usage of hook_register() in the daemon itself may need relative ordering to itself, making an explicit value the

expected case

The priority value is passed as extra argument on hook_register_prio() / hook_register_arg_prio(). Whether a hook
runs in reverse is determined solely by the code defining / calling the hook. (DECLARE_KOOH is actually the same
thing as DECLARE_HOOK, it’s just there to make it obvious.)

5.7.3 Definition

DECLARE_HOOK (name, arglist, passlist)

DECLARE_KOOH (name, arglist, passlist)

Parameters
* name — Name of the hook to be defined
» arglist — Function definition style parameter list in braces.
» passlist — List of the same parameters without their types.

Note: the second and third macro args must be the hook function’s parameter list, with the same names for each
parameter. The second macro arg is with types (used for defining things), the third arg is just the names (used
for passing along parameters).

This macro must be placed in a header file; this header file must be included to register a callback on the hook.

Examples:

DECLARE_HOOK (foo, O, O);
DECLARE_HOOK (bar, (int arg), (arg));
DECLARE_HOOK (baz, (const void *x, in_addr_t y), (x, y));

DEFINE_HOOK (name, arglist, passlist)

Implements an hook. Each DECLARE_HOOK must have be accompanied by exactly one DEFINE_HOOK, which
needs to be placed in a source file. The hook can only be called from this source file. This is intentional to
avoid overloading and/or misusing hooks for distinct purposes.

The compiled source file will include a global symbol with the name of the hook prefixed by _hook_. Trying to
register a callback for a hook that doesn’t exist will therefore result in a linker error, or a module load-time error
for dynamic modules.

DEFINE_KOOH (name, arglist, passlist)

Same as DEFINE_HOOK, but the sense of priorities / order of callbacks is reversed. This should be used for cleanup
hooks.

int hook_call (name, ...)

Calls the specified named hook. Parameters to the hook are passed right after the hook name, e.g.:

hook_call(foo);
hook_call (bar, 0);
hook_call(baz, NULL, INADDR_ANY);

150

Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

Returns the sum of return values from all callbacks. The DEFINE_HOOK statement for the hook must be placed
in the file before any hook_call use of the hook.

5.7.4 Callback registration

void hook_register (name, int (*callback)(...))
void hook_register_prio(name, int priority, int (*callback)(...))
void hook_register_arg(name, int (*callback)(void *arg, ...), void *arg)

void hook_register_arg_prio(name, int priority, int (*callback)(void *arg, ...), void *arg)
Register a callback with an hook. If the caller needs to pass an extra argument to the callback, the _arg variant
can be used and the extra parameter will be passed as first argument to the callback. There is no typechecking
for this argument.

The priority value is used as described above. The variants without a priority parameter use 1000 as priority
value.

void hook_unregister (name, int (*callback)(...))

void hook_unregister_arg(name, int (*callback)(void *arg, ...), void *arg)
Removes a previously registered callback from a hook. Note that there is no _prio variant of these calls. The
priority value is only used during registration.

5.8 Command Line Interface

FRR features a flexible modal command line interface. Often when adding new features or modifying existing code it
is necessary to create or modify CLI commands. FRR has a powerful internal CLI system that does most of the heavy
lifting for you.

5.8.1 Modes

FRR’s CLI is organized by modes. Each mode is associated with some set of functionality, e.g. EVPN, or some
underlying object such as an interface. Each mode contains a set of commands that control the associated functionality
or object. Users move between the modes by entering a command, which is usually different for each source and
destination mode.

A summary of the modes is given in the following figure.

5.8. Command Line Interface 151

FRR Developer’s Manual, Release latest

See also:

Data Structures

Walkup

FRR exhibits, for historical reasons, a peculiar behavior called ‘walkup’. Suppose a user is in OSPF_NODE, which
contains only OSPF-specific commands, and enters the following command:

ip route 192.168.100.0/24 10.0.2.2

This command is not defined in OSPF_NODE, so the matcher will fail to match the command in that node. The matcher
will then check “parent” nodes of OSPF_NODE. In this case the direct parent of OSPF_NODE is CONFIG_NODE, so the
current node switches to CONFIG_NODE and the command is tried in that node. Since static route commands are
defined in CONFIG_NODE the command succeeds. The procedure of attempting to execute unmatched commands by
sequentially “walking up” to parent nodes only happens in children (direct and indirect) below CONFIG_NODE and stops
at CONFIG_NODE.

Unfortunately, the internal representation of the various modes is not actually a graph. Instead, there is an array. The
parent-child relationships are not explicitly defined in any datastructure but instead are hard-coded into the specific
commands that switch nodes. For walkup, there is a function that takes a node and returns the parent of the node. This
interface causes all manner of insidious problems, even for experienced developers, and needs to be fixed at some point
in the future.

152 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

5.8.2 Deprecation of old style of commands

There are currently 2 styles of defining commands within a FRR source file. DEFUN and DEFPY. DEFPY should be used
for all new commands that a developer is writing. This is because it allows for much better handling of command line
arguments as well as ensuring that input is correct. DEFUN is listed here for historical reasons as well as for ensuring
that existing code can be understood by new developers.

5.8.3 Defining Commands

All definitions for the CLI system are exposed in 1ib/command.h. In this header there are a set of macros used to
define commands. These macros are collectively referred to as “DEFUNs”, because of their syntax:

DEFUN (command_name,
command_name_cmd,
"example command FO0O...",
"Examples\n"

"CLI command\n"
"Argument\n'")
{
// ...command handler. ..

}

DEFUN:Ss generally take four arguments which are expanded into the appropriate constructs for hooking into the CLI.
In order these are:

¢ Function name - the name of the handler function for the command

* Command name - the identifier of the struct cmd_element for the command. By convention this should be
the function name with _cmd appended.

e Command definition - an expression in FRR’s CLI grammar that defines the form of the command and its
arguments, if any

* Doc string - a newline-delimited string that documents each element in the command definition

In the above example, command_name is the function name, command_name_cmd is the command name, "example.
. ." is the definition and the last argument is the doc string. The block following the macro is the body of the handler
function, details on which are presented later in this section.

In order to make the command show up to the user it must be installed into the CLI graph. To do this, call:
install_element (NODE, &command_name_cmd) ;

This will install the command into the specified CLI node. Usually these calls are grouped together in a CLI initial-
ization function for a set of commands, and the DEFUNs themselves are grouped into the same source file to avoid
cluttering the codebase. The names of these files follow the form *_vty. [ch] by convention. Please do not scatter
individual CLI commands in the middle of source files; instead expose the necessary functions in a header and place
the command definition in a *_vty. [ch] file.

5.8. Command Line Interface 153

FRR Developer’s Manual, Release latest

Definition Grammar

FRR uses its own grammar for defining CLI commands. The grammar draws from syntax commonly seen in *nix
manpages and should be fairly intuitive. The parser is implemented in Bison and the lexer in Flex. These may be found

in 1ib/command_parse.y and 1ib/command_lex. 1, respectively.

ProTip: if you define a new command and find that the parser is throwing syntax or other errors, the parser
is the last place you want to look. Bison is very stable and if it detects a syntax error, 99% of the time it

will be a syntax error in your definition.

The formal grammar in BNF is given below. This is the grammar implemented in the Bison parser. At runtime, the
Bison parser reads all of the CLI strings and builds a combined directed graph that is used to match and interpret user

input.

Human-friendly explanations of how to use this grammar are given a bit later in this section alongside information on

the Data Structures constructed by the parser.

command
cmd_token_seq
cmd_token
simple_token
literal_token
varname_token

placeholder_token
placeholder_token_real

selector

selector_seq_seq
selector_token_seq

selector_token

cmd_token_seq

cmd_token_seq placeholder_token
empty

cmd_token_seq cmd_token
simple_token

selector

literal_token

placeholder_token

WORD varname_token

"$" WORD

placeholder_token_real varname_token
IPV4

IPV4_PREFIX

IPV6

IPV6_PREFIX

VARIABLE

RANGE

MAC

MAC_PREFIX

"<" selector_seq_seq ">" varname_token
"{" selector_seq_seq "}" varname_token
"[" selector_seq_seq "]" varname_token
"1[" selector_seq_seq "]" varname_token
selector_seq_seq "|" selector_token_seq
selector_token_seq

selector_token_seq selector_token
selector_token

selector

simple_token

154

Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

Tokens

The various capitalized tokens in the BNF above are in fact themselves placeholders, but not defined as such in the
formal grammar; the grammar provides the structure, and the tokens are actually more like a type system for the strings
you write in your CLI definitions. A CLI definition string is broken apart and each piece is assigned a type by the
lexer based on a set of regular expressions. The parser uses the type information to verify the string and determine the
structure of the CLI graph; additional metadata (such as the raw text of each token) is encoded into the graph as it is
constructed by the parser, but this is merely a dumb copy job.

Here is a brief summary of the various token types along with examples.

Token type Syntax Description

WORD show ip bgp Matches itself. In the given example every token is a WORD.
IPV4 A.B.C.D Matches an IPv4 address.

IPV6 X:X::X:X Matches an IPv6 address.

IPV4_PREFIX | A.B.C.D/M Matches an IPv4 prefix in CIDR notation.

IPV6_PREFIX | X:X::X:X/M Matches an IPv6 prefix in CIDR notation.

MAC X:X:X:X:X:X Matches a 48-bit mac address.

MAC_PREFIX X:X:X:X:X:X/M | Matches a 48-bit mac address with a mask.

VARIABLE FOOBAR Matches anything.

RANGE x-Y) Matches numbers in the range X..Y inclusive.

When presented with user input, the parser will search over all defined commands in the current context to find a match.
It is aware of the various types of user input and has a ranking system to help disambiguate commands. For instance,
suppose the following commands are defined in the user’s current context:

example command FOO
example command (22-49)
example command A.B.C.D/X

The following table demonstrates the matcher’s choice for a selection of possible user input.

Input Matched Reason

command
example example com- | eLi7eH4xxOr is not an integer or IPv4 prefix, but FOO is a variable and
command mand FOO matches all input.
eLi7eH4xx0r
example example com- | 42 is not an IPv4 prefix. It does match both (22-49) and FOO, but RANGE
command 42 mand (22-49) tokens are more specific and have a higher priority than VARIABLE tokens.
example example The user entered an IPv4 prefix, which is best matched by the last command.
command 10.3. | command
3.0/24 A.B.C.D/X

5.8. Command Line Interface 155

FRR Developer’s Manual, Release latest

Rules

There are also constructs which allow optional tokens, mutual exclusion, one-or-more selection and repetition.

* <angle|brackets>— Contain sequences of tokens separated by pipes and provide mutual exclusion. User input
matches at most one option.

* [square brackets] — Contains sequences of tokens that can be omitted. [<a|b>] can be shortened to [a|b].

e I[exclamation square brackets] —same as [square brackets], but only allow skipping the contents if
the command input starts with no. (For cases where the positive command needs a parameter, but the parameter
is optional for the negative case.)

e {curly|braces} — similar to angle brackets, but instead of mutual exclusion, curly braces indicate that one or
more of the pipe-separated sequences may be provided in any order.

e VARIADICS. .. — Any token which accepts input (anything except WORD) which occurs as the last token of a
line may be followed by an ellipsis, which indicates that input matching the token may be repeated an unlimited
number of times.

* $name — Specify a variable name for the preceding token. See “Variable Names” below.
Some general notes:

 Options are allowed at the beginning of the command. The developer is entreated to use these extremely sparingly.
They are most useful for implementing the ‘no’ form of configuration commands. Please think carefully before
using them for anything else. There is usually a better solution, even if it is just separating out the command
definition into separate ones.

¢ The developer should judiciously apply separation of concerns when defining commands. CLI definitions for two
unrelated or vaguely related commands or configuration items should be defined in separate commands. Clarity
is preferred over LOC (within reason).

* The maximum number of space-separated tokens that can be entered is presently limited to 256. Please keep this
limit in mind when implementing new CLI.

Variable Names

The parser tries to fill the “varname” field on each token. This can happen either manually or automatically. Manual
specifications work by appending $name after the input specifier:

foo bar$cmd WORD$name A.B.C.D$ip

Note that you can also assign variable names to fixed input tokens, this can be useful if multiple commands share code.
You can also use “$name” after a multiple-choice option:

foo bar <A.B.C.D|X:X::X:X>$addr [optionA|optionB]$mode

The variable name is in this case assigned to the last token in each of the branches.
Automatic assignment of variable names works by applying the following rules:

* manual names always have priority

* a [no] at the beginning receives no as varname on the no token

e VARIABLE tokens whose text is not WORD or NAME receive a cleaned lowercase version of the token text as varname,
e.g. ROUTE-MAP becomes route_map.

* other variable tokens (i.e. everything except “fixed”) receive the text of the preceding fixed token as varname, if
one can be found. E.g. ip route A.B.C.D/M INTERFACE assigns “route” to the A.B.C.D/M token.

156 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

These rules should make it possible to avoid manual varname assignment in 90% of the cases.

Doc Strings

Each token in a command definition should be documented with a brief doc string that informs a user of the meaning
and/or purpose of the subsequent command tree. These strings are provided as the last parameter to DEFUN macros,
concatenated together and separated by an escaped newline (\n). These are best explained by example.

DEFUN (config_terminal,
config_terminal_cmd,
"configure terminal",
"Configuration from vty interface\n"
"Configuration terminal\n")

The last parameter is split into two lines for readability. Two newline delimited doc strings are present, one for each
token in the command. The second string documents the functionality of the terminal command in the configure
subtree.

Note that the first string, for configure does not contain documentation for ‘terminal’. This is because the CLI is best
envisioned as a tree, with tokens defining branches. An imaginary start token is the root of every command in a CLI
node. Each subsequent written token descends into a subtree, so the documentation for that token ideally summarizes
all the functionality contained in the subtree.

A consequence of this structure is that the developer must be careful to use the same doc strings when defining multiple
commands that are part of the same tree. Commands which share prefixes must share the same doc strings for those
prefixes. On startup the parser will generate warnings if it notices inconsistent doc strings. Behavior is undefined; the
same token may show up twice in completions, with different doc strings, or it may show up once with a random doc
string. Parser warnings should be heeded and fixed to avoid confusing users.

The number of doc strings provided must be equal to the amount of tokens present in the command definition, read left
to right, ignoring any special constructs.

In the examples below, each arrowed token needs a doc string.

"show ip bgp"

A A A

"command <foo|bar> [example]"
A A A A

DEFPY

DEFPY(...) is an enhanced version of DEFUN() which is preprocessed by python/clidef.py. The python script
parses the command definition string, extracts variable names and types, and generates a C wrapper function that parses
the variables and passes them on. This means that in the CLI function body, you will receive additional parameters
with appropriate types.

This is best explained by an example. Invoking DEFPY like this:

DEFPY (func, func_cmd, "[no] foo bar A.B.C.D (0-99)$num”, "...help...")

defines the handler function like this:

5.8. Command Line Interface 157

FRR Developer’s Manual, Release latest

func(self, vty, argc, argv,

* standard CLI arguments */
* unparsed "no" */

* parsed IP address */

* unparsed IP address */

* parsed num */

* unparsed num */

const char *no,
struct in_addr bar,
const char *bar_str,
long num,

const char *num_str)

SIS

Note that as documented in the previous section, bar is automatically applied as variable name for A.B.C.D. The
Python script then detects this as an IP address argument and generates code to parse it into a struct in_addr,
passing it in bar. The raw value is passed in bar_str. The range/number argument works in the same way with the
explicitly given variable name.

Type rules
Token(s) Type Value if omitted by user
A.B.C.D struct in_addr 0.0.0.0
X:X::X:X struct in6_addr i
A.B.C.D + X:X::X:X const union sockunion * NULL
A.B.C.D/M const struct prefix_ipv4 * | all-zeroes struct
X:X::X:X/M const struct prefix_ipv6 * | all-zeroes struct
A.B.C.D/M + X:X::X:X/M | const struct prefix * all-zeroes struct
(0-9) long 0
VARIABLE const char * NULL
word const char * NULL
all other const char * NULL

Note the following details:

Not all parameters are pointers, some are passed as values.
When the type is not const char *, there will be an extra _str argument with type const char *

You can give a variable name not only to VARIABLE tokens but also to word tokens (e.g. constant words). This
is useful if some parts of a command are optional. The type will be const char *

[no] will be passed as const char *no.

Most pointers will be NULL when the argument is optional and the user did not supply it. As noted in the table
above, some prefix struct type arguments are passed as pointers to all-zeroes structs, not as NULL pointers.

If a parameter is not a pointer, but is optional and the user didn’t use it, the default value will be passed. Check
the _str argument if you need to determine whether the parameter was omitted.

If the definition contains multiple parameters with the same variable name, they will be collapsed into a single
function parameter. The python code will detect if the types are compatible (i.e. IPv4 + IPv6 variants) and
choose a corresponding C type.

The standard DEFUN parameters (self, vty, argc, argv) are still present and can be used. A DEFUN
can simply be edited into a DEFPY without further changes and it will still work; this allows easy forward
migration.

A file may contain both DEFUN and DEFPY statements.

158

Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

Getting a parameter dump

The clidef.py script can be called to get a list of DEFUNs/DEFPYs with the parameter name/type list:

lib/clippy python/clidef.py --all-defun --show lib/plist.c > /dev/null

The generated code is printed to stdout, the info dump to stderr. The --all-defun argument will make it process
DEFUN blocks as well as DEFPYs, which is useful prior to converting some DEFUNs. The dump does not list the
**_str’" arguments to keep the output shorter.

Note that the clidef. py script cannot be run with python directly, it needs to be run with clippy since the latter makes
the CLI parser available.

Include & Makefile requirements

A source file that uses DEFPY needs to include the *_clippy. c file before all DEFPY statements:

/* GPL header */
#include ...

#ifndef VTYSH_EXTRACT_PL
#include "daemon/filename_clippy.c"

#endif
DEFPY(...)
DEFPY(...)

install_element(...)

This dependency needs to be marked in Makefile.am or subdir.am: (there is no ordering requirement)

if linked into a LTLIBRARY (.la/.so):
filename.lo: filename_clippy.c

if linked into an executable or static library (.a):
filename.o: filename_clippy.c

Handlers

The block that follows a CLI definition is executed when a user enters input that matches the definition. Its function
signature looks like this:

int (*func) (const struct cmd_element *, struct vty *, int, struct cmd_token *[]);

The first argument is the command definition struct. The last argument is an ordered array of tokens that correspond
to the path taken through the graph, and the argument just prior to that is the length of the array.

The arrangement of the token array has changed from Quagga’s CLI implementation. In the old system, missing
arguments were padded with NULL so that the same parts of a command would show up at the same indices regardless
of what was entered. The new system does not perform such padding and therefore it is generally incorrect to assume
consistent indices in this array. As a simple example:

5.8. Command Line Interface 159

FRR Developer’s Manual, Release latest

Command definition:

command [foo] <bar|baz>

User enters:

command foo bar

Array:

[0] -> command
[1] -> foo

[2] -> bar

User enters:

command baz

Array:

[0] -> command
[1] -> baz

5.8.4 Data Structures

On startup, the CLI parser sequentially parses each command string definition and constructs a directed graph with
each token forming a node. This graph is the basis of the entire CLI system. It is used to match user input in order to
generate command completions and match commands to functions.

There is one graph per CLI node (not the same as a graph node in the CLI graph). The CLI node struct keeps a reference
to its graph (see 1ib/command.h).

While most of the graph maintains the form of a tree, special constructs outlined in the Rules section introduce some
quirks. <>, [] and {} form self-contained ‘subgraphs’. Each subgraph is a tree except that all of the ‘leaves’ actually
share a child node. This helps with minimizing graph size and debugging.

As a working example, here is the graph of the following command:

show [ip] bgp neighbors [<A.B.C.D|X:X::X:X|WORD>] [json]

FORK and JOIN nodes are plumbing nodes that don’t correspond to user input. They re necessary in order to deduplicate
these constructs where applicable.

Options follow the same form, except that there is an edge from the FORK node to the JOIN node. Since all of the
subgraphs in the example command are optional, all of them have this edge.

Keywords follow the same form, except that there is an edge from JOIN to FORK. Because of this the CLI graph cannot
be called acyclic. There is special logic in the input matching code that keeps a stack of paths already taken through
the node in order to disallow following the same path more than once.

Variadics are a bit special; they have an edge back to themselves, which allows repeating the same input indefinitely.

The leaves of the graph are nodes that have no out edges. These nodes are special; their data section does not contain
a token, as most nodes do, or NULL, as in FORK/JOIN nodes, but instead has a pointer to a cmd_element. All paths
through the graph that terminate on a leaf are guaranteed to be defined by that command. When a user enters a complete
command, the command matcher tokenizes the input and executes a DFS on the CLI graph. If it is simultaneously able
to exhaust all input (one input token per graph node), and then find exactly one leaf connected to the last node it

160 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

START_TKN

WORD_TKN
"ShDW“

FORK_TKN

/

WORD_TKN
i

\

JOIN_TKN

WORD_TKN
||hgp||

Y

WORD_TKN
'neighbors'

IPV4_TKN

IPV6_TKN VARIABLE_TKN
ABT.D Ko WORD™

JOIN_TKN

Pt

: Fig1—Graphof exampte CEFcommmand
5.8. Command Line Interface 161

FRR Developer’s Manual, Release latest

reaches, then the input has matched the corresponding command and the command is executed. If it finds more than
one node, then the command is ambiguous (more on this in deduplication). If it cannot exhaust all input, the command
is unknown. If it exhausts all input but does not find an edge node, the command is incomplete.

The parser uses an incremental strategy to build the CLI graph for a node. Each command is parsed into its own graph,
and then this graph is merged into the overall graph. During this merge step, the parser makes a best-effort attempt to
remove duplicate nodes. If it finds a node in the overall graph that is equal to a node in the corresponding position in
the command graph, it will intelligently merge the properties from the node in the command graph into the already-
existing node. Subgraphs are also checked for isomorphism and merged where possible. The definition of whether two
nodes are ‘equal’ is based on the equality of some set of token properties; read the parser source for the most up-to-date
definition of equality.

When the parser is unable to deduplicate some complicated constructs, this can result in two identical paths through
separate parts of the graph. If this occurs and the user enters input that matches these paths, they will receive an
‘ambiguous command’ error and will be unable to execute the command. Most of the time the parser can detect and
warn about duplicate commands, but it will not always be able to do this. Hence care should be taken before defining
a new command to ensure it is not defined elsewhere.

struct cmd_token

/* Command token struct. */
struct cmd_token

{
enum cmd_token_type type; // token type
uint8_t attr; // token attributes
bool allowrepeat; // matcher can match token repetitively?
char *text; // token text
char *desc; // token description
long long min, max; // for ranges
char *arg; // user input that matches this token
char *varname; // variable name
};

This struct is used in the CLI graph to match input against. It is also used to pass user input to command handler
functions, as it is frequently useful for handlers to have access to that information. When a command is matched, the
sequence of cmd_tokens that form the matching path are duplicated and placed in order into *argv[]. Before this
happens the ->arg field is set to point at the snippet of user input that matched it.

For most nontrivial commands the handler function will need to determine which of the possible matching inputs was
entered. Previously this was done by looking at the first few characters of input. This is now considered an anti-pattern
and should be avoided. Instead, the ->type or ->text fields for this logic. The ->type field can be used when the
possible inputs differ in type. When the possible types are the same, use the ->text field. This field has the full text
of the corresponding token in the definition string and using it makes for much more readable code. An example is
helpful.

Command definition:

command <(1-10) | foo|BAR>

In this example, the user may enter any one of: - an integer between 1 and 10 - “foo” - anything at all

If the user enters “command £, then:

162 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

argv[1l]->type == WORD_TKN

argv[1l]->arg == "f"
argv[l]->text == "foo"
Range tokens have some special treatment; a token with ->type == RANGE_TKN will have the ->min and ->max fields

set to the bounding values of the range.

struct cmd_element

struct cmd_node {
/* Node index. */
enum node_type node;

/* Prompt character at vty interface. */
const char *prompt;

/* Is this node's configuration goes to vtysh ? */
int vtysh;

/* Node's configuration write function */
int (*func) (struct vty *);

/* Node's command graph */
struct graph *cmdgraph;

/* Vector of this node's command list. */
vector cmd_vector;

/% Hashed index of command node list, for de-dupping primarily */
struct hash *cmd_hash;
};

This struct corresponds to a CLI mode. The last three fields are most relevant here.

cmdgraph This is a pointer to the command graph that was described in the first part of this section. It is the datas-
tructure used for matching user input to commands.

cmd_vector This is a list of all the struct cmd_element defined in the mode.

cmd_hash This is a hash table of all the struct cmd_element defined in the mode. When install_element is
called, it checks that the element it is given is not already present in the hash table as a safeguard against duplicate
calls resulting in a command being defined twice, which renders the command ambiguous.

All struct cmd_node are themselves held in a static vector defined in 1ib/command. c that defines the global CLI
space.

5.8. Command Line Interface 163

FRR Developer’s Manual, Release latest

5.8.5 Command Abbreviation & Matching Priority

It is possible for users to elide parts of tokens when the CLI matcher does not need them to make an unambiguous
match. This is best explained by example.

Command definitions:

command dog cow
command dog crow

User input:
cdc -> ambiguous command
cd co -> match "command dog cow"

The parser will look ahead and attempt to disambiguate the input based on tokens later on in the input string.

Command definitions:

show ip bgp A.B.C.D
show ipv6 bgp X:X::X:X

User enters:

sib4.3.2.1 -> match "show ip bgp A.B.C.D"
sib ::el -> match "show ipv6 bgp X:X::X:X"

Reading left to right, both of these commands would be ambiguous since ‘i’ does not explicitly select either ‘ip’
or ‘ipv6’. However, since the user later provides a token that matches only one of the commands (an IPv4 or IPv6
address) the parser is able to look ahead and select the appropriate command. This has some implications for parsing
the *argv[] that is passed to the command handler.

Now consider a command definition such as:

command <foo|VAR>

‘foo’ only matches the string ‘foo’, but “‘VAR’ matches any input, including ‘foo’. Who wins? In situations like this the
matcher will always choose the ‘better’ match, so ‘foo” will win.

Consider also:

show <ip|ipv6> foo

User input:

show ip foo

ip partially matches ipv6 but exactly matches ip, so ip will win.

164 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

5.8.6 Adding a CLI Node

To add a new CLI node, you should:
¢ define a new numerical node constant
¢ define a node structure in the relevant daemon
e call install_node() in the relevant daemon
* define and install the new node in vtysh
¢ define corresponding node entry commands in daemon and vtysh

* add a new entry to the ctx_keywords dictionary in tools/frr-reload.py

Defining the numerical node constant

Add your new node value to the enum before NODE_TYPE_MAX in 1ib/command. h:

enum node_type {

AUTH_NODE, // Authentication mode of vty interface.
VIEW_NODE, // View node. Default mode of vty interface.
[...]

MY_NEW_NODE,

NODE_TYPE_MAX, // maximum

Defining a node structure

In your daemon-specific code where you define your new commands that attach to the new node, add a node definition:

static struct cmd_node my_new_node = {
.name = "my new node name'",
.node = MY_NEW_NODE, // enum node_type 1ib/command.h
.parent_node = CONFIG_NODE,
.prompt = "%s(my-new-node-prompt)# ",
.config_write = my_new_node_config write,

1

You will need to define my_new_node_config_write(struct vty *vty) (oromitthis field if you have no relevant
configuration to save).

Calling install_node()

In the daemon’s initialization function, before installing your new commands with install_element(), add a call
install_node(&my_new_node).

5.8. Command Line Interface 165

FRR Developer’s Manual, Release latest

Defining and installing the new node in vtysh

The build tools automatically collect command definitions for vtysh. However, new nodes must be coded in vtysh
specifically.

In vtysh/vtysh. c, define a stripped-down node structure and call install_node():

static struct cmd_node my_new_node = {
.hame = "my new node name",
.node = MY_NEW_NODE, /* enum node_type 1lib/command.h */
.parent_node = CONFIG_NODE,

.prompt = "%s(my-new-node-prompt)# ",

};
[...]
void vtysh_init_vty(void)
{

[...]

install_node (&my_new_node)

[...]
}

Defining corresponding node entry commands in daemon and vtysh

The command that descends into the new node is typically programmed with VTY_PUSH_CONTEXT or equivalent in the
daemon’s CLI handler function. (If the CLI has been updated to use the new northbound architecture, VTY_PUSH_XPATH
is used instead.)

In vtysh, you must implement a corresponding node change so that vtysh tracks the daemon’s movement through the
node tree.

Although the build tools typically scan daemon code for CLI definitions to replicate their parsing in vtysh, the node-
descent function in the daemon must be blocked from this replication so that a hand-coded skeleton can be written in
vtysh.c.

Accordingly, use one of the *_NOSH macros such as DEFUN_NOSH, DEFPY_NOSH, or DEFUN_YANG_NOSH for the dae-
mon’s node-descent CLI definition, and use DEFUNSH in vtysh. c for the vtysh equivalent.

See also:
Special DEFUNs
Examples:

zebra_whatever.c

DEFPY_NOSH(my_new_node,
my_new_node_cmd,
"my-new-node foo",
"New Thing\n"

"A foo\n")
{
[...]
VTY_PUSH_CONTEXT (MY_NEW_NODE, bar);
[...]
}

ripd_whatever.c

166 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

DEFPY_YANG_NOSH(my_new_node,
my_new_node_cmd,
"my-new-node foo",
"New Thing\n"

"A foo\n")
{
[...]
VTY_PUSH_XPATH(MY_NEW_NODE, xbar);
[...]
}
vtysh.c

DEFUNSH(VTYSH_ZEBRA, my_new_node,
my_new_node_cmd,
"my-new-node foo",

"New Thing\n"

"A foo\n")

{
vty->node = MY_NEW_NODE;
return CMD_SUCCESS;

}

[...]

install_element (CONFIG_NODE, &my_new_node_cmd) ;

Adding a new entry to the ctx_keywords dictionary

In file tools/frr-reload.py, the ctx_keywords dictionary describes the various node relationships. Add a new
node entry at the appropriate level in this dictionary.

ctx_keywords = {
[...]
"key chain ": {
"key ": {}
}1
[...]
"my-new-node": {3},

[...]

5.8.7 Inspection & Debugging
Permutations

It is sometimes useful to check all the possible combinations of input that would match an arbitrary definition string.
There is a tool in tools/permutations that reads CLI definition strings on stdin and prints out all matching input
permutations. It also dumps a text representation of the graph, which is more useful for debugging than anything else.
It looks like this:

5.8. Command Line Interface 167

FRR Developer’s Manual, Release latest

$./permutations "show [ip] bgp [<view|vrf> WORD]"

show ip bgp view WORD
show ip bgp vrf WORD
show ip bgp

show bgp view WORD
show bgp vrf WORD
show bgp

This functionality is also built into VITY/VTYSH; 1list permutations will list all possible matching input permu-
tations in the current CLI node.

Graph Inspection

When in the Telnet or VTYSH console, show cli graph will dump the entire command space of the current mode
in the DOT graph language. This can be fed into one of the various GraphViz layout engines, such as dot, neato, etc.

For example, to generate an image of the entire command space for the top-level mode (ENABLE_NODE):

sudo vtysh -c 'show cli graph' | dot -Tjpg -Grankdir=LR > graph. jpg

To do the same for the BGP mode:

sudo vtysh -c 'conf t' -c 'router bgp' -c 'show cli graph' | dot -Tjpg -Grankdir=LR >_
—bgpgraph. jpg

This information is very helpful when debugging command resolution, tracking down duplicate / ambiguous com-
mands, and debugging patches to the CLI graph builder.

5.9 Modules

FRR has facilities to load DSOs at startup via dlopen(). These are used to implement modules, such as SNMP and
FPM.

5.9.1 Limitations

 can’t load, unload, or reload during runtime. This just needs some work and can probably be done in the future.

* doesn’t fix any of the “things need to be changed in the code in the library” issues. Most prominently, you can’t
add a CLI node because CLI nodes are listed in the library...

* if your module crashes, the daemon crashes. Should be obvious.

¢ does not provide a stable API or ABI. Your module must match a version of FRR and you may have to update
it frequently to match changes.

* does not create a license boundary. Your module will need to link libzebra and include header files from the
daemons, meaning it will be GPL-encumbered.

168 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

5.9.2 Installation

Look for moduledir in configure.ac, default is normally /usr/1ib64/frr/modules but depends on --1libdir /
--prefix.

The daemon’s name is prepended when looking for a module, e.g. “snmp” tries to find “zebra_snmp” first when used
in zebra. This is just to make it nicer for the user, with the snmp module having the same name everywhere.

Modules can be packaged separately from FRR. The SNMP and FPM modules are good candidates for this because
they have dependencies (net-snmp / protobuf) that are not FRR dependencies. However, any distro packages should
have an “exact-match” dependency onto the FRR package. Using a module from a different FRR version will probably
blow up nicely.

For snapcraft (and during development), modules can be loaded with full path (e.g. -M $SNAP/1ib/frr/modules/
zebra_snmp.so). Note that libtool puts output files in the .libs directory, so during development you have to use
./zebra -M .libs/zebra_snmp.so.

5.9.3 Creating a module

... best to look at the existing SNMP or FPM modules.

Basic boilerplate:

#include "hook.h"

#include "module.h"
#include "libfrr.h"
#include '"thread.h"

static int module_late_init(struct thread_master *master)

{
/* Do initialization stuff here */
return 0;

}

static int

module_init (void)

{
hook_register(frr_late_init, module_late_init);
return 0;

}

FRR_MODULE_SETUP (
.name = "my module",
.version = "0.0",
.description = "my module",
.init = module_init,

)H

The frr_late_init hook will be called after the daemon has finished its other startup and is about to enter the main
event loop; this is the best place for most initialisation.

5.9. Modules 169

FRR Developer’s Manual, Release latest

5.9.4 Compiler & Linker magic

There’s a THIS_MODULE (like in the Linux kernel), which uses visibility attributes to restrict it to the current module.
If you get a linker error with _frrmod_this_module, there is some linker SNAFU. This shouldn’t be possible, though
one way to get it would be to not include libzebra (which provides a fallback definition for the symbol).

libzebra and the daemons each have their own THIS_MODULE, as do all loadable modules. In any other libraries
(e.g. libfrrsnmp), THIS_MODULE will use the definition in libzebra; same applies if the main executable doesn’t
use FRR_DAEMON_INFO (e.g. all testcases).

The deciding factor here is “what dynamic linker unit are you using the symbol from.” If you’re in a library function
and want to know who called you, you can’t use THIS_MODULE (because that’ll just tell you you’re in the library). Put
a macro around your function that adds THIS_MODULE in the caller’s code calling your function.

The idea is to use this in the future for module unloading. Hooks already remember which module they were installed
by, as groundwork for a function that removes all of a module’s installed hooks.

There’s also the frr_module symbol in modules, pretty much a standard entry point for loadable modules.

5.9.5 Command line parameters

Command line parameters can be passed directly to a module by appending a colon to the module name when load-
ing it, e.g. -M mymodule:myparameter. The text after the colon will be accessible in the module’s code through
THIS_MODULE->load_args. For example, see how the format parameter is configured in the zfpm_init () function
inside zebra_fpm. c.

5.9.6 Hooks

Hooks are just points in the code where you can register your callback to be called. The parameter list is specific to
the hook point. Since there is no stable API, the hook code has some extra type safety checks making sure you get a
compiler warning when the hook parameter list doesn’t match your callback. Don’t ignore these warnings.

5.9.7 Relation to MTYPE macros
The MTYPE macros, while primarily designed to decouple MTYPEs from the library and beautify the code, also work
very nicely with loadable modules — both constructors and destructors are executed when loading/unloading modules.

This means there is absolutely no change required to MTYPEs, you can just use them in a module and they will even
clean up themselves when we implement module unloading and an unload happens. In fact, it’s impossible to create a
bug where unloading fails to de-register a MTYPE.

5.10 Scripting

See also:

User docs for scripting

170 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

5.10.1 Overview
FRR has the ability to call Lua scripts to perform calculations, make decisions, or otherwise extend builtin behavior
with arbitrary user code. This is implemented using the standard Lua C bindings. The supported version of Lua is 5.3.

C objects may be passed into Lua and Lua objects may be retrieved by C code via a encoding/decoding system. In this
way, arbitrary data from FRR may be passed to scripts.

The Lua environment is isolated from the C environment; user scripts cannot access FRR’s address space unless ex-
plicitly allowed by FRR.

For general information on how Lua is used to extend C, refer to Part IV of “Programming in Lua”.

https://www.lua.org/pil/contents.html#24

5.10.2 Design

Why Lua

Luais designed to be embedded in C applications. Itis very small; the standard library is 220K. It is relatively fast. It has
a simple, minimal syntax that is relatively easy to learn and can be understood by someone with little to no programming
experience. Moreover it is widely used to add scripting capabilities to applications. In short it is designed for this task.

Reasons against supporting multiple scripting languages:
» Each language would require different FFI methods, and specifically different object encoders; a lot of code
» Languages have different capabilities that would have to be brought to parity with each other; a lot of work

» Languages have vastly different performance characteristics; this would create alot of basically unfixable issues,
and result in a single de facto standard scripting language (the fastest)

» Each language would need a dedicated maintainer for the above reasons; this is pragmatically difficult

 Supporting multiple languages fractures the community and limits the audience with which a given script can be
shared

5.10.3 General

FRR'’s scripting functionality is provided in the form of Lua functions in Lua scripts (. lua files). One Lua script may
contain many Lua functions. These are respectively encapsulated in the following structures:

struct frrscript {
/* Lua file name */
char *name;

/* hash of lua_function_states */
struct hash *lua_function_hash;

};

struct lua_function_state {
/* Lua function name */
char *name;

lua_State *L;
};

5.10. Scripting 171

https://www.lua.org/pil/contents.html#24

FRR Developer’s Manual, Release latest

struct frrscript: Since all Lua functions are contained within scripts, the following APIs manipulates this structure.
name contains the Lua script name and a hash of Lua functions to their function names.

struct lua_function_state is an internal structure, but it essentially contains the name of the Lua function and its state
(a stack), which is run using Lua library functions.

In general, to run a Lua function, these steps must take place:
* Initialization
* Load
e Call

e Delete

Initialization

The frrscript object encapsulates the Lua function state(s) from one Lua script file. To create, use
frrscript_new() which takes the name of the Lua script. The string “.lua” is appended to the script name, and
the resultant filename will be used to look for the script when we want to load a Lua function from it.

For example, to create frrscript for /etc/frr/scripts/bingus. lua:

struct frrscript *fs = frrscript_new("bingus");

The script is not read at this stage. This function cannot be used to test for a script’s presence.

Load

The function to be called must first be loaded. Use frrscript_load() which takes a frrscript object, the name
of the Lua function and a callback function. The script file will be read to load and compile the function.

For example, to load the Lua function on_foo in /etc/frr/scripts/bingus. lua:

int ret = frrscript_load(fs, "on_foo", NULL);

This function returns 0 if and only if the Lua function was successfully loaded. A non-zero return could indicate either
a missing Lua script, a missing Lua function, or an error when loading the function.

During loading the script is validated for syntax and its environment is set up. By default this does not include the Lua
standard library; there are security issues to consider, though for practical purposes untrusted users should not be able
to write the scripts directory anyway.

Call

After loading, a Lua function can be called any number of times.

172 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

Input

Inputs to the Lua script should be given by providing a list of parenthesized pairs, where the first and second field
identify the name of the variable and the value it is bound to, respectively. The types of the values must have registered
encoders (more below); the compiler will warn you otherwise.

These variables are first encoded in-order, then provided as arguments to the Lua function. In the example, note that c
is passed in as a value while a and b are passed in as pointers.

int a = 100, b = 200, c = 300;
frrscript_call(fs, "on_foo", ("a", &a), ("b", &b), ("c", c));

function on_foo(a, b, ©)
-- a is 100, b is 200, c is 300

Output

int a = 100, b = 200, c = 300;
frrscript_call(fs, "on_foo", ("a", &a), ("b", &b), ("c", c));
// a is 500, b is 200, c is 300

int* d = frrscript_get_result(fs, "on_foo", "d", lua_tointegerp);
// d is 800

function on_foo(a, b, ©)

b = 600
return { ["a"] = 500, ["c"] = 700, ["d"] = 800 }
end

Lua functions being called must return a single table of string names to values. (Lua functions should return an
empty table if there is no output.) The keys of the table are mapped back to names of variables in C. Note that the
values in the table can also be tables. Since tables are Lua’s primary data structure, this design lets us return any Lua
value.

After the Lua function returns, the names of variables to frrscript_call () are matched against keys of the returned
table, and then decoded. The types being decoded must have registered decoders (more below); the compiler will warn
you otherwise.

In the example, since a was in the returned table and b was not, a was decoded and its value modified, while b was
not decoded. ¢ was decoded as well, but its decoder is a noop. What modifications happen given a variable depends
whether its name was in the returned table and the decoder’s implementation.

Warning: Always keep in mind that non const-qualified pointers in frrscript_call() may be modified - this
may be a source of bugs. On the other hand, const-qualified pointers and other values cannot be modified.

Tip: You can make a copy of a data structure and pass that in instead, so that modifications only happen to that copy.

frrscript_call Q) returns O if and only if the Lua function was successfully called. A non-zero return could indicate
either a missing Lua script, a missing Lua function, or an error from the Lua interpreter.

5.10. Scripting 173

FRR Developer’s Manual, Release latest

In the above example, d was not an input to frrscript_call(), so its value must be explicitly retrieved with
frrscript_get_result.

frrscript_get_result() takes a decoder and string name which is used as a key to search the returned table.
Returns the pointer to the decoded value, or NULL if it was not found. In the example, d is a “new” value in C space,
so memory allocation might take place. Hence the caller is responsible for memory deallocation.

frrscript_call() may be called multiple times without re-loading with frrscript_load(). Results are not pre-
served between consecutive calls.

frrscript_load(fs, "on_foo");

frrscript_call(fs, "on_foo");

frrscript_get_result(fs, "on_foo", ...);
frrscript_call(fs, "on_foo");
frrscript_get_result(fs, "on_foo", ...);
Delete

To delete a script and the all Lua states associated with it:

frrscript_delete(£fs);

A complete example

So, a typical execution call, with error checking, looks something like this:

struct frrscript *fs = frrscript_new('my_script"); // name *without®* .lua

int ret = frrscript_load(fs, "on_foo", NULL);
if (ret !'= 0)
goto DONE; // Lua script or function might have not been found

int a = 100, b = 200, c = 300;
ret = frrscript_call(fs, "on_foo", ("a", &a), ("b", &b), ("c", c));
if (ret !'= 0)

goto DONE; // Lua function might have not successfully run

// a and b might be modified
assert(a == 500);
assert(b == 200);

// ¢ could not have been modified
assert(c == 300);

// d is new
int* d = frrscript_get_result(fs, "on_foo", "d", lua_tointegerp);
if (!d)

goto DONE; // "d" might not have been in returned table

assert(*d == 800);

(continues on next page)

174 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

(continued from previous page)

XFREE(MTYPE_SCRIPT_RES, d); // caller responsible for free

DONE:
frrscript_delete(£s);

function on_foo(a, b, ©)

b = 600
return { a = 500, c = 700, d = 800 }
end
Notethat { a = ...issameas { ["a"] = ...;itis Lua shorthand to use the variable name as the key in a table.

Encoding and Decoding

Earlier sections glossed over the types of values that can be passed into frrscript_call() and how data is passed
between C and Lua. Lua, as a dynamically typed, garbage collected language, cannot directly use C values without
some kind of encoding / decoding system to translate types between the two runtimes.

Lua communicates with C code using a stack. C code wishing to provide data to Lua scripts must provide a function
that encodes the C data into a Lua representation and pushes it on the stack. C code wishing to retrieve data from
Lua must provide a corresponding decoder function that retrieves a Lua value from the stack and converts it to the
corresponding C type.

Encoders and decoders are provided for common data types. Developers wishing to pass their own data structures
between C and Lua need to create encoders and decoders for that data type.

We try to keep them named consistently. There are three kinds of encoders and decoders:
1. lua_push*: encodes a value onto the Lua stack. Required for frrscript_call.

2. lua_decode*: decodes a value from the Lua stack. Required for frrscript_call. Only non const-qualified
pointers may be actually decoded (more below).

3. lua_to*: allocates memory and decodes a value from the Lua stack. Required for frrscript_get_result.
This design allows us to combine typesafe modification of C values as well as allocation of new C values.

In the following sections, we will use the encoders/decoders for struct prefix as an example.

Encoding

An encoder function takes a lua_State *, a C type and pushes that value onto the Lua state (a stack). For C structs,
the usual case, this will typically be encoded to a Lua table, then pushed onto the Lua stack.

Here is the encoder function for struct prefix:

void lua_pushprefix(lua_State *L, struct prefix *prefix)

{
char buffer[PREFIX_STRLEN];

lua_newtable(L);

lua_pushstring(L, prefix2str(prefix, buffer, PREFIX_STRLEN));
lua_setfield(L, -2, "network");

lua_pushinteger (L, prefix->prefixlen);

lua_setfield(L, -2, "length");

(continues on next page)

5.10. Scripting 175

FRR Developer’s Manual, Release latest

(continued from previous page)

lua_pushinteger (L, prefix->family);
lua_setfield(L, -2, "family");

This function pushes a single value, a table, onto the Lua stack, whose equivalent in Lua is:

{ ["network"] = "1.2.3.4/24", ["prefixlen"] = 24, ["family"] = 2 }

Decoding

Decoders are a bit more involved. They do the reverse; a decoder function takes a lua_State *, pops a value off the
Lua stack and converts it back into its C type.

There are two: lua_decode* and lua_to*. The former does no mememory allocation and is needed for
frrscript_call. The latter performs allocation and is optional.

A lua_decode_* function takes a lua_State*, an index, and a pointer to a C data structure, and directly modifies the
structure with values from the Lua stack. Note that only non const-qualified pointers may be modified; lua_decode_*
for other types will be noops.

Again, for struct prefix *:

void lua_decode_prefix(lua_State *L, int idx, struct prefix *prefix)
{
lua_getfield(L, idx, "network");
(void)str2prefix(lua_tostring(L, -1), prefix);
/* pop the network string */
lua_pop(L, 1);
/* pop the prefix table */
lua_pop(L, 1);

Note:

* Before 1lua_decode* is run, the “prefix” table is already on the top of the stack. frrscript_call does
this for us.

* However, at the end of 1lua_decode*, the “prefix” table should be popped.

* The other two fields in the “network™ table are disregarded, meaning that any modification to them is
discarded in C space. In this case, this is desired behavior.

Warning: lua_decode* functions should pop all values that lua_to* pushed onto the Lua stack. For encoders
that pushed a table, its decoder should pop the table at the end. The above is an example.

int is not a non const-qualified pointer, so for int:

void lua_decode_int_noop(lua_State *L, int idx, int i)
{ //noop
}

A lua_to* function provides identical functionality except that it first allocates memory for the new C type before
decoding the value from the Lua stack, then returns a pointer to the newly allocated C type. You only need to implement
this function to use with frrscript_get_result to retrieve a result of this type.

176 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

This function can and should be implemented using lua_decode_%*:

void *lua_toprefix(lua_State *L, int idx)

{
struct prefix *p = XCALLOC(MTYPE_SCRIPT_RES, sizeof(struct prefix));
lua_decode_prefix(L, idx, p);
return p;

}

The returned data must always be copied off the stack and the copy must be allocated with MTYPE_SCRIPT_RES. This
way it is possible to unload the script (destroy the state) without invalidating any references to values stored in it. Note
that it is the caller’s responsibility to free the data.

Registering encoders and decoders for frrscript_call

To register a new type with its lua_push* and lua_decode* functions, add the mapping in the following macros in
frrscript.h:

#define ENCODE_ARGS_WITH_STATE(L, value) \
_Generic((value), \

- struct peer * : lua_pushpeer \

+ struct peer * : lua_pushpeer, \
+ struct prefix * : lua_pushprefix \

Y(M), (value))

#define DECODE_ARGS_WITH_STATE(L, value) \
_Generic((value), \

- struct peer * : lua_decode_peer \

+ struct peer * : lua_decode_peer, \
+ struct prefix * : lua_decode_prefix \

YW, -1, (value))

At compile time, the compiler will search for encoders/decoders for the type of each value passed in via
frrscript_call. If a encoder/decoder cannot be found, it will appear as a compile warning. Note that the types
must match exactly. In the above example, we defined encoders/decoders for a value of struct prefix *, but not

%

struct prefixor const struct prefix *

const values are a special case. We want to use them in our Lua scripts but not modify them, so creating a decoder
for them would be meaningless. But we still need a decoder for the type of value so that the compiler will be satisfied.
For that, use 1lua_decode_noop:

#define DECODE_ARGS_WITH_STATE(L, value) \
_Generic((value), \

+ const struct prefix * : lua_decode_noop \
Y, -1, value)

Note: Encodable/decodable types are not restricted to simple values like integers, strings and tables. It is possible to
encode a type such that the resultant object in Lua is an actual object-oriented object, complete with methods that call

5.10. Scripting 177

FRR Developer’s Manual, Release latest

back into defined C functions. See the Lua manual for how to do this; for a code example, look at how zlog is exported
into the script environment.

5.10.4 Script Environment

Logging

For convenience, script environments are populated by default with a 1og object which contains methods corresponding
to each of the zlog levels:

log.info("info")
log.warn("warn")
log.error("error")
log.notice('"notice")
log.debug("debug")

The log messages will show up in the daemon’s log output.

5.10.5 Examples

For a complete code example involving passing custom types, retrieving results, and doing complex calculations in Lua,
look at the implementation of the match script SCRIPT command for BGP routemaps. This example calls into a
script with a function named route_match, provides route prefix and attributes received from a peer and expects the
function to return a match / no match / match and update result.

An example script to use with this follows. This function matches, does not match or updates a route depending on
how many BGP UPDATE messages the peer has received when the script is called, simply as a demonstration of what
can be accomplished with scripting.

-- Example route map matching

-- author: glyoung

-- The following variables are available in the global environment:
-- log

-- logging library, with the usual functions
-- route_match arguments:

-- table prefix

-- the route under consideration

-- table attributes

-- the route's attributes

-- table peer

-- the peer which received this route

-- integer RM_FAILURE

-- status code in case of failure

-- integer RM_NOMATCH

-- status code for no match

-- integer RM_MATCH

-- status code for match

-- integer RM_MATCH_AND_CHANGE

-- status code for match-and-set

(continues on next page)

178 Chapter 5. Library Facilities (libfrr)

FRR Developer’s Manual, Release latest

(continued from previous page)

-- route_match returns table with following keys:
-- integer action, required

-- resultant status code. Should be one of RM_*
-- table attributes, optional

-- updated route attributes

function route_match(prefix, attributes, peer,
RM_FAILURE, RM_NOMATCH, RM_MATCH, RM_MATCH_AND_CHANGE)
log.info("Evaluating route " .. prefix.network .. " from peer "
—id.string)

. peer.remote_

function on_match (prefix, attributes)
log.info("Match")
return {
attributes = RM_MATCH
}

end

function on_nomatch (prefix, attributes)
log.info("No match™)
return {
action = RM_NOMATCH

end

function on_match_and_change (prefix, attributes)
log.info("Match and change")
attributes["metric"] = attributes["metric"] + 7
return {
action = RM_MATCH_AND_CHANGE,
attributes = attributes

end

special_routes = {
["172.16.10.4/24"] = on_match,
["172.16.13.1/8"] = on_nomatch,
["192.168.0.24/8"] = on_match_and_change,

if special_routes[prefix.network] then
return special_routes[prefix.network] (prefix, attributes)

elseif peer.stats.update_in % 3 == 0 then
return on_match(prefix, attributes)
elseif peer.stats.update_in % 2 == 0 then

return on_nomatch(prefix, attributes)
else
return on_match_and_change(prefix, attributes)

(continues on next page)

5.10. Scripting 179

FRR Developer’s Manual, Release latest

(continued from previous page)

end

end

180

Chapter 5. Library Facilities (libfrr)

CHAPTER
SIX

FUZZING

This page describes the fuzzing targets and supported fuzzers available in FRR and how to use them. Familiarity with
fuzzing techniques and tools is assumed.

6.1 Overview

It is well known that networked applications tend to be difficult to fuzz on their network-facing attack surfaces. Ap-
proaches involving actual network transmission tend to be slow and are subject to intermediate devices and networking
stacks which tend to drop fuzzed packets, especially if the fuzzing surface covers IP itself. Some time was spent on
fuzzing FRR this way with some mediocre results but attention quickly turned towards skipping the actual networking
and instead adding fuzzing targets directly in the packet processing code for use by more traditional in- and out-of-
process fuzzers. Results from this approach have been very fruitful.

The patches to add fuzzing targets are kept in a separate git branch. Typically it is better to keep them in the main branch
so they are kept up to date and do not need to be constantly synchronized with the main codebase. Unfortunately,
changes to FRR to support fuzzing necessarily extend far beyond the entrypoints. Checksums must be disarmed,
interactions with the kernel must be skipped, sockets and files must be avoided, desired under/overflows must be marked,
etc. There are the usual LD_PRELOAD libraries to emulate these things (preeny et al) but FRR is a very kernel-reliant
program and these libraries tend to create annoying problems when used with FRR for whatever reason. Keeping this
code in the main codebase is cluttering, difficult to work with / around, and runs the risk of accidentally introducing
bugs even if #ifdef’d out. Consequently it’s in a separate branch that is rebased on master from time to time.

6.2 Code

The git branch with fuzzing targets is located here:
https://github.com/FRRouting/frr/tree/fuzz

To build libFuzzer targets, pass --enable-libfuzzer to configure. To build AFL targets, compile with afl-clang
as usual.

Fuzzing with sanitizers is strongly recommended, especially ASAN, which you can enable by passing
--enable-address-sanitizer to configure.

Suggested UBSAN flags: -fsanitize-recover=unsigned-integer-overflow,implicit-conversion
-fsanitize=unsigned-integer-overflow,implicit-conversion,nullability-arg,
nullability-assign,nullability-return Recommended cflags: -Wno-all -g3 -03 -funroll-loops

181

https://github.com/FRRouting/frr/tree/fuzz

FRR Developer’s Manual, Release latest

6.3 Design

All fuzzing targets have support for libFuzzer and AFL. This is done by writing the target as a libFuzzer entrypoint
(LLVMFuzzerTestOneInput()) and calling it from the AFL entrypoint in main(). New targets should use this rule.

When adding AFL entrypoints, it’s a good idea to use AFL persistent mode for better performance. Grep bgpd/
bgp_main.c for __AFL_INIT(Q) for an example of how to do this in FRR. Typically it involves moving all internal
daemon setup into a setup function. Then this setup function is called exactly once for the lifetime of the process. In
LLVMFuzzerTestOneInput () this means you need to call it at the start of the function protected by a static boolean
that is set to true, since that function is your entrypoint. You also need to call it prior to __AFL_INIT() in main()
because main() is your entrypoint in the AFL case.

6.3.1 Adding support to daemons

This section describes how to add entrypoints to daemons that do not have any yet.

Because libFuzzer has its own main () function, when adding fuzzing support to a daemon that doesn’t have any targets
already, main() needs to be #ifdef’d out like so:

#1ifndef FUZZING_LIBFUZZER

int main(int argc, char **argv)

{
}

#endif /* FUZZING_LIBFUZZER */

The FUZZING_LIBFUZZER macro is set by --enable-libfuzzer.

Because libFuzzer can only be linked into daemons that have LLVMFuzzerTestOneInput () implemented, we can’t
pass -fsanitize=fuzzer to all daemons in AM_CFLAGS. It needs to go into a variable specific to each daemon. Since
it can be thought of as a kind of sanitizer, for daemons that have libFuzzer support there are now individual flags
variables for those daemons named DAEMON_SAN_FLAGS (e.g. BGPD_SAN_FLAGS, ZEBRA_SAN_FLAGS). This variable
has the contents of the generic SAN_FLAGS plus any fuzzing-related flags. It is used in daemons’ subdir.am in place
of SAN_FLAGS. Daemons that don’t support libFuzzer still use SAN_FLAGS. If you want to add fuzzing support to a
daemon you need to do this flag variable conversion; look at configure.ac for examples, it is fairly straightforward.
Remember to update subdir.am to use the new variable.

Do note that when fuzzing is enabled, SAN_FLAGS gains -fsanitize=fuzzer-no-1ink; the result is that all daemons
are instrumented for fuzzing but only the ones with LLVMFuzzerTestOneInput () actually get linked with libFuzzer.

6.4 Targets

A given daemon can have lots of different paths that are interesting to fuzz. There’s not really a great way to handle
this, most fuzzers assume the program has one entrypoint. The approach taken in FRR for multiple entrypoints is
to control which path is taken within LLVMFuzzerTestOneInput () using #ifdef and passing whatever controlling
macro definition you want. Take a look at that function for the daemon you’re interested in fuzzing, pick the target, add
#define MY_TARGET 1 somewhere before the #ifdef switch, recompile.

182 Chapter 6. Fuzzing

FRR Developer’s Manual, Release latest

6.5 Fuzzer Notes

Table 1: Fuzzing Targets

Daemon | Target Fuzzers

bgpd packet parser | libfuzzer, afl
ospfd packet parser | libfuzzer, afl
pimd packet parser | libfuzzer, afl
vrrpd packet parser | libfuzzer, afl
vrrpd zapi parser libfuzzer, afl
zebra netlink libfuzzer, afl
zebra zserv / zapi libfuzzer, afl

Some interesting seed corpuses for various daemons are available here.

For libFuzzer, you need to pass -rss_limit_mb=0 if you are fuzzing with ASAN enabled, as you should.

For AFL, afl++ is strongly recommended; afl proper isn’t really maintained anymore.

6.5. Fuzzer Notes

183

https://github.com/qlyoung/frr-fuzz/tree/master/samples

FRR Developer’s Manual, Release latest

184 Chapter 6. Fuzzing

CHAPTER
SEVEN

TRACING

FRR has a small but growing number of static tracepoints available for use with various tracing systems. These trace-
points can assist with debugging, performance analysis and to help understand program flow. They can also be used
for monitoring.

Developers are encouraged to write new static tracepoints where sensible. They are not compiled in by default, and
even when they are, they have no overhead unless enabled by a tracer, so it is okay to be liberal with them.

7.1 Supported tracers

Presently two types of tracepoints are supported:
e LTTng tracepoints
e USDT probes

LTTng is a tracing framework for Linux only. It offers extremely low overhead and very rich tracing capabilities. FRR
supports LTTng-UST, which is the userspace implementation. LTTng tracepoints are very rich in detail. No kernel
modules are needed. Besides only being available for Linux, the primary downside of LTTng is the need to link to
lttng-ust.

USDT probes originate from Solaris, where they were invented for use with dtrace. They are a kernel feature. At least
Linux and FreeBSD support them. No library is needed; support is compiled in via a system header (<sys/sdt.h>).
USDT probes are much slower than LTTng tracepoints and offer less flexibility in what information can be gleaned
from them.

LTTng is capable of tracing USDT probes but has limited support for them. SystemTap and dtrace both work only with
USDT probes.

7.2 Usage

To compile with tracepoints, use one of the following configure flags:

--enable-1lttng=yes
Generate LTTng tracepoints

--enable-usdt=yes
Generate USDT probes

To trace with LTTng, compile with either one (prefer --enable-1ttng run the target in non-forking mode (no -d)
and use LTTng as usual (refer to LTTng user manual). When using USDT probes with LTTng, follow the example in
this article. To trace with dtrace or SystemTap, compile with —enable-usdt=yes and use your tracer as usual.

To see available USDT probes:

185

https://lttng.org/
http://dtrace.org/guide/chp-usdt.html
https://lttng.org/blog/2019/10/15/new-dynamic-user-space-tracing-in-lttng/

FRR Developer’s Manual, Release latest

readelf -n /usr/lib/frr/bgpd

Example:

root@host ~> readelf -n /usr/lib/frr/bgpd

Displaying notes found in: .note.ABI-tag
Owner Data size Description
GNU 0x00000010 NT_GNU_ABI_TAG (ABI version tag)
0S: Linux, ABI: 3.2.0

Displaying notes found in: .note.gnu.build-id
Owner Data size Description
GNU 0x00000014 NT_GNU_BUILD_ID (unique build ID bitstring)
Build ID: 4£42933a69dcb42a519bc459b2105177c8adf55d

Displaying notes found in: .note.stapsdt

Owner Data size Description

stapsdt 0x00000045 NT_STAPSDT (SystemTap probe descriptors)
Provider: frr_bgp
Name: packet_read
Location: 0x000000000045ee48, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-96(%rbp) 8@-104(%rbp)

stapsdt 0x00000047 NT_STAPSDT (SystemTap probe descriptors)
Provider: frr_bgp
Name: open_process
Location: 0x000000000047c43b, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-224(%rbp) 2@-226(%rbp)

stapsdt 0x00000049 NT_STAPSDT (SystemTap probe descriptors)
Provider: frr_bgp
Name: update_process
Location: 0x000000000047c4bf, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-208(%rbp) 2@-210(%rbp)

stapsdt 0x0000004f NT_STAPSDT (SystemTap probe descriptors)
Provider: frr_bgp
Name: notification_process
Location: 0x000000000047c557, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-192(%rbp) 2@-194(%rbp)

stapsdt 0x0000004c NT_STAPSDT (SystemTap probe descriptors)
Provider: frr_bgp
Name: keepalive_process
Location: 0x000000000047c5db, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-176(%rbp) 2@-178(%rbp)

stapsdt 0x0000004a NT_STAPSDT (SystemTap probe descriptors)
Provider: frr_bgp
Name: refresh_process
Location: 0x000000000047c673, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-160(%rbp) 2@-162(%rbp)

stapsdt 0x0000004d NT_STAPSDT (SystemTap probe descriptors)
Provider: frr_bgp
Name: capability_process
Location: 0x000000000047c6£f7, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-144(%rbp) 2@-146(%rbp)

(continues on next page)

186 Chapter 7. Tracing

FRR Developer’s Manual, Release latest

(continued from previous page)

stapsdt 0x0000006f NT_STAPSDT (SystemTap probe descriptors)
Provider: frr_bgp
Name: output_filter
Location: 0x000000000048e33a, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-144(%rbp) 8@-152(%rbp) 4@-156(%rbp) 4@-160(%rbp) 8@-168(%rbp)
stapsdt 0x0000007d NT_STAPSDT (SystemTap probe descriptors)
Provider: frr_bgp
Name: process_update
Location: 0x0000000000491f10, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-800(%rbp) 8@-808(%rbp) 4@-812(%rbp) 4@-816(%rbp) 4@-820(%rbp) 8@-832(
~%rbp)
stapsdt
Provider: frr_bgp
Name: input_filter
Location: 0x00000000004940ed, Base: 0x00000000005a09d2, Semaphore: 0x0000000000000000
Arguments: 8@-144(%rbp) 8@-152(%rbp) 4@-156(%rbp) 4@-160(%rbp) 8@-168(%rbp)

0x0000006¢e NT_STAPSDT (SystemTap probe descriptors)

To see available LTTng probes, run the target, create a session and then:

lttng list --userspace | grep frr

Example:

root@host ~> lttng list --userspace | grep frr
PID: 11157 - Name: /usr/lib/frr/bgpd
frr_libfrr:route_node_get (loglevel: TRACE_DEBUG_LINE (13)) (type: tracepoint)

frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
frr_libfrr:
output_filter (loglevel: TRACE_INFO (6)) (type: tracepoint)
input_filter (loglevel: TRACE_INFO (6)) (type: tracepoint)
process_update (loglevel: TRACE_INFO (6)) (type: tracepoint)
packet_read (loglevel: TRACE_INFO (6)) (type: tracepoint)
refresh_process (loglevel: TRACE_INFO (6)) (type: tracepoint)
capability_process (loglevel: TRACE_INFO (6)) (type: tracepoint)
notification_process (loglevel: TRACE_INFO (6)) (type: tracepoint)
update_process (loglevel: TRACE_INFO (6)) (type: tracepoint)

frr_bgp:
frr_bgp:
frr_bgp:
frr_bgp:
frr_bgp:
frr_bgp:
frr_bgp:
frr_bgp:

list_sort (loglevel: TRACE_DEBUG_LINE (13)) (type: tracepoint)
list_delete_node (loglevel: TRACE_DEBUG_LINE (13)) (type: tracepoint)
list_remove (loglevel: TRACE_DEBUG_LINE (13)) (type: tracepoint)
list_add (loglevel: TRACE_DEBUG_LINE (13)) (type: tracepoint)

memfree (loglevel: TRACE_DEBUG_LINE (13)) (type: tracepoint)

memalloc (loglevel: TRACE_DEBUG_LINE (13)) (type: tracepoint)
frr_pthread_stop (loglevel: TRACE_DEBUG_LINE (13)) (type: tracepoint)
frr_pthread_run (loglevel: TRACE_DEBUG_LINE (13)) (type: tracepoint)
thread_call (loglevel: TRACE_INFO (6)) (type: tracepoint)
thread_cancel_async (loglevel: TRACE_INFO (6)) (type: tracepoint)
thread_cancel (loglevel: TRACE_INFO (6)) (type: tracepoint)
schedule_write (loglevel: TRACE_INFO (6)) (type: tracepoint)
schedule_read (loglevel: TRACE_INFO (6)) (type: tracepoint)
schedule_event (loglevel: TRACE_INFO (6)) (type: tracepoint)
schedule_timer (loglevel: TRACE_INFO (6)) (type: tracepoint)
hash_release (loglevel: TRACE_INFO (6)) (type: tracepoint)
hash_insert (loglevel: TRACE_INFO (6)) (type: tracepoint)

hash_get (loglevel: TRACE_INFO (6)) (type: tracepoint)

(continues on next page)

7.2. Usage

187

FRR Developer’s Manual, Release latest

(continued from previous page)

frr_bgp:keepalive_process (loglevel: TRACE_INFO (6)) (type: tracepoint)
frr_bgp:open_process (loglevel: TRACE_INFO (6)) (type: tracepoint)

When using LTTng, you can also get zlogs as trace events by enabling the 1ttng_ust_tracelog: * event class.

To see available SystemTap USDT probes, run:

stap -L 'process("/usr/lib/frr/bgpd") .mark("*")"

Example:

root@host ~> stap -L 'process("/usr/lib/frr/bgpd") .mark("*")’'
process("/usr/lib/frr/bgpd") .mark("capability_process") $argl:long $arg2:long
process("/usr/lib/frr/bgpd™) .mark("input_filter") $argl:long $arg2:long $arg3:long
—$arg4:1long $arg5:long

process("/usr/lib/frr/bgpd") .mark("keepalive_process™) $argl:long $arg2:long
process("/usr/lib/frr/bgpd") .mark("notification_process") $argl:long $arg2:long
process("/usr/lib/frr/bgpd") .mark("open_process") $argl:long $arg2:long
process("/usr/lib/frr/bgpd") .mark("output_filter") $argl:long $arg2:long $arg3:long
—$arg4:1long $arg5:long

process("/usr/lib/frr/bgpd") .mark("packet_read") $argl:long $arg2:long
process("/usr/lib/frr/bgpd") .mark("process_update") $argl:long $arg2:long $arg3:long
—$arg4:1long $arg5:1long $arg6:long

process("/usr/lib/frr/bgpd") .mark("refresh_process") $argl:long $arg2:long
process("/usr/lib/frr/bgpd") .mark("update_process") $argl:long $arg2:long

When using SystemTap, you can also easily attach to an existing function:

stap -L 'process("/usr/lib/frr/bgpd") . function("bgp_update_receive")'

Example:

root@ost ~> stap -L 'process("/usr/lib/frr/bgpd").function("bgp_update_receive")'
process("/usr/lib/frr/bgpd") . function("bgp_update_receive@bgpd/bgp_packet.c:1531")
—$peer:struct peer* $size:bgp_size_t $attr:struct attr $restart:_Bool $nlris:struct bgp_
onlri[] $__func__:char const[] const

Complete bgp . stp example using SystemTap to show BGP peer, prefix and aspath using process_update USDT:

global pkt_size;
probe begin
{
ansi_clear_screen();
println("Starting...");
}
probe process("/usr/lib/frr/bgpd").function("bgp_update_receive™)
{
pkt_size <<< $size;
}
probe process("/usr/lib/frr/bgpd") .mark("process_update")
{
aspath = @cast($arg6, "attr")->aspath;
printf("> %s via %s (%s)\n",

(continues on next page)

188 Chapter 7. Tracing

FRR Developer’s Manual, Release latest

(continued from previous page)

user_string($arg2),
user_string(@cast($argl, "peer")->host),
user_string(@cast(aspath, "aspath")->str));
}
probe end
{
if (@count(pkt_size))
print(@hist_linear(pkt_size, 0, 20, 2));

Output:

Starting. ..

> 192.168.0.0/24 via 192.168.0.1 (65534)

> 192.168.100.1/32 via 192.168.0.1 (65534)

> 172.16.16.1/32 via 192.168.0.1 (65534 65030)

ACvalue |--————--—""—""— count
0 | 0
2 | 0
4 |@ 1
6 | 0
8 | 0
18 | 0
20 | 0
>20 |@@eea@ 5

7.3 Concepts

Tracepoints are statically defined points in code where a developer has determined that outside observers might gain
something from knowing what is going on at that point. It’s like logging but with the ability to dump large amounts of
internal data with much higher performance. LTTng has a good summary here.

Each tracepoint has a “provider” and name. The provider is basically a namespace; for example, bgpd uses the
provider name frr_bgp. The name is arbitrary, but because providers share a global namespace on the user’s sys-
tem, all providers from FRR should be prefixed by frr_. The tracepoint name is just the name of the event. Events
are globally named by their provider and name. For example, the event when BGP reads a packet from a peer is
frr_bgp:packet_read.

To do tracing, the tracing tool of choice is told which events to listen to. For example, to listen to all events from FRR’s
BGP implementation, you would enable the events frr_bgp:*. In the same tracing session you could also choose to
record all memory allocations by enabling the malloc tracepoints in 1ibc as well as all kernel skb operations using
the various in-kernel tracepoints. This allows you to build as complete a view as desired of what the system is doing
during the tracing window (subject to what tracepoints are available).

Of particular use are the tracepoints for FRR’s internal event scheduler; tracing these allows you to see all events
executed by all event loops for the target(s) in question. Here’s a couple events selected from a trace of BGP during
startup:

[18:41:35.750131763] (+0.000048901) host frr_libfrr:thread_call: { cpu_id =

(continues on next page)

7.3. Concepts 189

https://lttng.org/docs/#doc-what-is-tracing

FRR Developer’s Manual, Release latest

(continued from previous page)

1 }, { threadmaster_name = "default", function_name = "zclient_connect",
scheduled_from = "lib/zclient.c", scheduled_on_line = 3877, thread_addr =
0x0, file_descriptor = 0, event_value = 0, argument_ptr = 0xA37F70, timer =
0}

[18:41:35.750175124] (+0.000020001) host frr_libfrr:thread_call: { cpu_id =
1 3}, { threadmaster_name = "default", function_name = "frr_config_read_in",
scheduled_from = "lib/libfrr.c", scheduled_on_line = 934, thread_addr = 0x0,
file_descriptor = 0, event_value = 0, argument_ptr = 0x0, timer = 0 }

[18:41:35.753341264] (+0.000010532) host frr_libfrr:thread_call: { cpu_id =
1 3}, { threadmaster_name = "default", function_name = "bgp_event",

scheduled_from = "bgpd/bgpd.c", scheduled_on_line = 142, thread_addr = 0x0,
file_descriptor = 2, event_value = 2, argument_ptr = 0xE4D780, timer = 2 }

[18:41:35.753404186] (+0.000004910) host frr_libfrr:thread_call: { cpu_id =
1 }, { threadmaster_name = "default", function_name = "zclient_read",
scheduled_from = "lib/zclient.c", scheduled_on_line = 3891, thread_addr =
0x0, file_descriptor = 40, event_value = 40, argument_ptr = 0xA37F70, timer
=40 }

Very useful for getting a time-ordered look into what the process is doing.

7.4 Adding Tracepoints

Adding new tracepoints is a two step process:
1. Define the tracepoint
2. Use the tracepoint

Tracepoint definitions state the “provider”” and name of the tracepoint, along with any values it will produce, and how to
format them. This is done with macros provided by LTTng. USDT probes do not use definitions and are inserted at the
trace site with a single macro. However, to maintain support for both platforms, you must define an LTTng tracepoint
when adding a new one. frrtrace() will expand to the appropriate DTRACE_PROBEn macro when USDT is in use.

If you are adding new tracepoints to a daemon that has no tracepoints, that daemon’s subdir.am must be updated to
conditionally link 1ttng-ust. Look at bgpd/subdir . am for an example of how to do this; grep for UST_LIBS. Create
new files named <daemon>_trace. [ch]. Use bgpd/bgp_trace. [h] as boilerplate. If you are adding tracepoints to
a daemon that already has them, look for the <daemon>_trace.h file; tracepoints are written here.

Refer to the LTTng developer docs for details on how to define tracepoints.

To use them, simply add a call to frrtrace() at the point you’d like the event to be emitted, like so:

switch (type) {
case :
frrtrace(2, frr_bgp, open_process, peer, size); /* tracepoint */
atomic_fetch_add_explicit(&peer->open_in, 1,

(continues on next page)

190 Chapter 7. Tracing

https://lttng.org/docs/#doc-c-application

FRR Developer’s Manual, Release latest

(continued from previous page)

memory_order_relaxed) ;
mprc = bgp_open_receive(peer, size);

After recompiling this tracepoint will now be available, either as a USDT probe or LTTng tracepoint, depending on
your compilation choice.

7.4.1 trace.h

Because FRR supports multiple types of tracepoints, the code for creating them abstracts away the underlying system
being used. This abstraction code is in 1ib/trace.h. There are 2 function-like macros that are used for working with
tracepoints.

e frrtrace() defines tracepoints
e frrtrace_enabled() checks whether a tracepoint is enabled

There is also frrtracelog(), which is used in zlog core code to make zlog messages available as trace events to
LTTng. This should not be used elsewhere.

There is additional documentation in the header. The key thing to note is that you should never include trace.h in
source where you plan to put tracepoints; include the tracepoint definition header instead (e.g. bgp_trace.h).

7.5 Limitations

Tracers do not like fork () or dlopen(). LTTng has some workarounds for this involving interceptor libraries using
LD_PRELOAD.

If you’re running FRR in a typical daemonizing way (-d to the daemons) you’ll need to run the daemons like so:

LD_PRELOAD=1liblttng-ust-fork.so <daemon>

If you’re using systemd this you can accomplish this for all daemons by modifying frr.service like so:

--- a/frr.service

+++ b/frr.service

@@ -7,6 +7,7 @@ Before=network.target
OnFailure=heartbeat-failed@¥n

[Service]
+Environment="LD_PRELOAD=1iblttng-ust-fork.so"

Nice=-5

Type=forking

NotifyAccess=all

USDT tracepoints are relatively high overhead and probably shouldn’t be used for “flight recorder” functionality, i.e.
enabling and passively recording all events for monitoring purposes. It’s generally okay to use LT Tng like this, though.

7.5. Limitations 191

FRR Developer’s Manual, Release latest

192 Chapter 7. Tracing

CHAPTER
EIGHT

TESTING

8.1 Topotests

Topotests is a suite of topology tests for FRR built on top of micronet.

8.1.1 Installation and Setup

Topotests run under python3. Additionally, for ExaBGP (which is used in some of the BGP tests) an older python2
version (and the python2 version of pip) must be installed.

Tested with Ubuntu 20.04,Ubuntu 18.04, and Debian 11.

Instructions are the same for all setups (i.e. ExaBGP is only used for BGP tests).

Installing Topotest Requirements

apt-get install gdb

apt-get install iproute2

apt-get install net-tools

apt-get install python3-pip

python3 -m pip install wheel

python3 -m pip install 'pytest>=6.2.4'
python3 -m pip install 'pytest-xdist>=2.3.0'
python3 -m pip install 'scapy>=2.4.5'
python3 -m pip install xmltodict

Use python2 pip to install older ExaBGP
python2 -m pip install 'exabgp<4.0.0'
useradd -d /var/run/exabgp/ -s /bin/false exabgp

To enable the gRPC topotest install:
python3 -m pip install grpcio grpcio-tools

193

FRR Developer’s Manual, Release latest

Enable Coredumps

Optional, will give better output.

disable apport (which move core files)

Set enabled=0 in /etc/default/apport.

Next, update security limits by changing /etc/security/limits.conf to:

#<domain> <type> <item> <value>

soft core unlimited
root soft core unlimited
hard core unlimited
root hard core unlimited

Reboot for options to take effect.

SNMP Utilities Installation

To run SNMP test you need to install SNMP utilities and MIBs. Unfortunately there are some errors in the upstream
MIBS which need to be patched up. The following steps will get you there on Ubuntu 20.04.

apt install libsnmp-dev

apt install snmpd snmp

apt install snmp-mibs-downloader

download-mibs

wget http://www.iana.org/assignments/ianaippmmetricsregistry-mib/ianaippmmetricsregistry-
—mib -0 /usr/share/snmp/mibs/iana/IANA-IPPM-METRICS-REGISTRY-MIB

wget http://pastebin.com/raw.php?i=p3QyuXzZ -0 /usr/share/snmp/mibs/ietf/SNMPv2-PDU
wget http://pastebin.com/raw.php?i=gG7j8nyk -0 /usr/share/snmp/mibs/ietf/IPATM-IPMC-MIB
edit /etc/snmp/snmp.conf to look like this

As the snmp packages come without MIB files due to license reasons, loading

of MIBs is disabled by default. If you added the MIBs you can reenable

loading them by commenting out the following line.

mibs +ALL

FRR Installation

FRR needs to be installed separately. It is assume to be configured like the standard Ubuntu Packages:
¢ Binaries in /usr/1ib/frr
* State Directory /var/run/frr
* Running under user frr, group frr
e vtygroup: frrvty
* config directory: /etc/frr
 For FRR Packages, install the dbg package as well for coredump decoding

No FRR config needs to be done and no FRR daemons should be run ahead of the test. They are all started as part of
the test.

194 Chapter 8. Testing

FRR Developer’s Manual, Release latest

Manual FRR build

If you prefer to manually build FRR, then use the following suggested config:

./configure \
--prefix=/usr \
--localstatedir=/var/run/frr \
--sbindir=/usr/lib/frr \
--sysconfdir=/etc/frr \
--enable-vtysh \
--enable-pimd \
--enable-sharpd \
--enable-multipath=64 \
--enable-user=frr \
--enable-group=frr \
--enable-vty-group=frrvty \
--enable-snmp=agentx \
--with-pkg-extra-version=-my-manual-build

And create frr user and frrvty group as follows:

addgroup --system --gid 92 frr

addgroup --system --gid 85 frrvty

adduser --system --ingroup frr --home /var/run/frr/ \
--gecos "FRRouting suite" --shell /bin/false frr

usermod -G frrvty frr

8.1.2 Executing Tests

Configure your sudo environment

Topotests must be run as root. Normally this will be accomplished through the use of the sudo command. In order for
topotests to be able to open new windows (either XTerm or byobu/screen/tmux windows) certain environment variables
must be passed through the sudo command. One way to do this is to specify the -E flag to sudo. This will carry over
most if not all your environment variables include PATH. For example:

sudo -E python3 -m pytest -s -v

If you do not wish to use -E (e.g., to avoid sudo inheriting PATH) you can modify your /etc/sudoers config file to
specifically pass the environment variables required by topotests. Add the following commands to your /etc/sudoers
config file.

Defaults env_keep="TMUX"
Defaults env_keep+="TMUX_PANE"
Defaults env_keep+="STY"
Defaults env_keep+="DISPLAY"

If there was already an env_keep configuration there be sure to use the += rather than = on the first line above as well.

8.1. Topotests 195

FRR Developer’s Manual, Release latest

Execute all tests in distributed test mode

sudo -E pytest -s -v -nauto --dist=loadfile

The above command must be executed from inside the topotests directory.

All test_* scripts in subdirectories are detected and executed (unless disabled in pytest.ini file). Pytest will execute
up to N tests in parallel where N is based on the number of cores on the host.

Analyze Test Results (analyze.py)

By default router and execution logs are saved in /tmp/topotests and an XML results file is saved in /tmp/
topotests.xml. An analysis tool analyze.py is provided to archive and analyze these results after the run com-
pletes.

After the test run completes one should pick an archive directory to store the results in and pass this value to analyze.
py. On first execution the results are copied to that directory from /tmp, and subsequent runs use that directory for
analyzing the results. Below is an example of this which also shows the default behavior which is to display all failed
and errored tests in the run.

~/frr/tests/topotests# ./analyze.py -Ar run-save
bgp_multiview_topol/test_bgp_multiview_topol.py::test_bgp_converge
ospf_basic_functionality/test_ospf_lan.py::test_ospf_lan_tcl_p0®
bgp_gr_functionality_topo2/test_bgp_gr_functionality_topo2.py::test_BGP_GR_10_p2
bgp_multiview_topol/test_bgp_multiview_topol.py::test_bgp_routingTable

Here we see that 4 tests have failed. We an dig deeper by displaying the captured logs and errors. First let’s redisplay
the results enumerated by adding the -E flag

~/frr/tests/topotests# ./analyze.py -Ar run-save -E

0 bgp_multiview_topol/test_bgp_multiview_topol.py::test_bgp_converge

1 ospf_basic_functionality/test_ospf_lan.py::test_ospf_lan_tcl_p0®

2 bgp_gr_functionality_topo2/test_bgp_gr_functionality_topo2.py::test_BGP_GR_10_p2
3 bgp_multiview_topol/test_bgp_multiview_topol.py::test_bgp_routingTable

Now to look at the error message for a failed test we use -T N where N is the number of the test we are interested in
along with --errmsg option.

~/frr/tests/topotests# ./analyze.py -Ar run-save -TO® --errmsg
bgp_multiview_topol/test_bgp_multiview_topol.py::test_bgp_converge: AssertionError: BGP.
—did not converge:

IPv4 Unicast Summary (VIEW 1):

BGP router identifier 172.30.1.1, local AS number 100 vrf-id -1
BGP table version 1

RIB entries 1, using 184 bytes of memory

Peers 3, using 2169 KiB of memory

Neighbor V' AS MsgRcvd UMsgSent TblVer 1InQ OutQ Up/Down State/
—PfxRcd P£fxSnt Desc

172.16.1.1 4 65001 0 0 0 0 0 never o
—Connect O N/A

172.16.1.2 4 65002 0 0 0 0 0 never o
—Connect O N/A

(continues on next page)

196 Chapter 8. Testing

FRR Developer’s Manual, Release latest

(continued from previous page)

172.16.1.5 4 65005 0 0 0 0 0 never .
—.Connect 0 N/A

Total number of neighbors 3

assert False

Now to look at the full text of the error for a failed test we use -T N where N is the number of the test we are interested
in along with --errtext option.

~/frr/tests/topotests# ./analyze.py -Ar run-save -TO --errtext
bgp_multiview_topol/test_bgp_multiview_topol.py::test_bgp_converge: def test_bgp_
—converge():

"Check for BGP converged on all peers and BGP views"

global fatal_error
global net
[...]
else:
Bail out with error if a router fails to converge
bgpStatus = net["r%s" % il.cmd('vtysh -c "show ip bgp view %s summary"' %.

—view)
> assert False, "BGP did not converge:\n%s'" % bgpStatus
E AssertionError: BGP did not converge:
E
E IPv4 Unicast Summary (VIEW 1):
E BGP router identifier 172.30.1.1, local AS number 100 vrf-id -1
[...]
E Neighbor ' AS MsgRcvd MsgSent TblVer 1InQ OutQ Up/
—Down State/PfxRcd PfxSnt Desc
E 172.16.1.1 4 65001 0 0 0 0 0 o
—never Connect 0 N/A
E 172.16.1.2 4 65002 0 0 0 0 0 .
—nhever Connect 0 N/A
[...]

To look at the full capture for a test including the stdout and stderr which includes full debug logs, just use the -T N
option without the --errmsg or --errtext options.

~/frr/tests/topotests# ./analyze.py -Ar run-save -TO

@classname: bgp_multiview_topol.test_bgp multiview_topol

@name: test_bgp_converge

@time: 141.401

@message: AssertionError: BGP did not converge:

[...]

system-out: --—--------———— - Captured Log ---------———=—-————————————————
2021-08-09 02:55:06,581 DEBUG: lib.micronet_compat.topo: Topo(unnamed): Creating
2021-08-09 02:55:06,581 DEBUG: lib.micronet_compat.topo: Topo(unnamed): addHost rl

[...]

2021-08-09 02:57:16,932 DEBUG: topolog.rl: LinuxNamespace(rl): cmd_status("['/bin/bash’,
~'-c', 'vtysh -c "show ip bgp view 1 summary" 2> /dev/null | grep ~[0-9] | grep -vP "_
<~ 11\\s+(\\d+)""'1", kwargs: {'encoding': 'utf-8', 'stdout': -1, 'stderr': -2, 'shell':,

—False}) (continues on next page)

8.1. Topotests 197

FRR Developer’s Manual, Release latest

(continued from previous page)

2021-08-09 02:57:22,290 DEBUG: topolog.rl: LinuxNamespace(rl): cmd_status("['/bin/bash',
—'-c', 'vtysh -c "show ip bgp view 1 summary" 2> /dev/null | grep ~[0-9] | grep -vP "_
< II\\s+(\\d+)"']", kwargs: {'encoding': 'utf-8', 'stdout': -1, 'stderr': -2, 'shell':_
—False})

2021-08-09 02:57:27,636 DEBUG: topolog.rl: LinuxNamespace(rl): cmd_status("['/bin/bash',
—'-c', 'vtysh -c "show ip bgp view 1 summary"']", kwargs: {'encoding': 'utf-8', 'stdout
"1 -1, 'stderr': -2, 'shell': False})

————————————————————————————————— Captured Out -------——-——————————
System-err: -—-—-—-—-—-—--------m Captured Err ------———————————-mmm

y———

Execute single test

cd test_to_be_run
./test_to_be_run.py

For example, and assuming you are inside the frr directory:

cd tests/topotests/bgp_l3vpn_to_bgp_vrf
./test_bgp_l3vpn_to_bgp_vrf.py

For further options, refer to pytest documentation.
Test will set exit code which can be used with git bisect.
For the simulated topology, see the description in the python file.

StdErr log from daemos after exit

To enable the reporting of any messages seen on StdErr after the daemons exit, the following env variable can be set:

export TOPOTESTS_CHECK_STDERR=Yes

(The value doesn’t matter at this time. The check is whether the env variable exists or not.) There is no pass/fail on this
reporting; the Output will be reported to the console.

Collect Memory Leak Information

FRR processes can report unfreed memory allocations upon exit. To enable the reporting of memory leaks, define an
environment variable TOPOTESTS_CHECK_MEMLEAK with the file prefix, i.e.:

export TOPOTESTS_CHECK_MEMLEAK="/home/mydir/memleak_"

This will enable the check and output to console and the writing of the information to files with the given prefix (followed
by testname), ie /home/mydir/memcheck_test_bgp_multiview_topol.txt in case of a memory leak.

198 Chapter 8. Testing

FRR Developer’s Manual, Release latest

Running Topotests with AddressSanitizer

Topotests can be run with AddressSanitizer. It requires GCC 4.8 or newer. (Ubuntu 16.04 as suggested here is fine
with GCC 5 as default). For more information on AddressSanitizer, see https://github.com/google/sanitizers/wiki/
AddressSanitizer.

The checks are done automatically in the library call of checkRouterRunning (ie at beginning of tests when there
is a check for all daemons running). No changes or extra configuration for topotests is required beside compiling the
suite with AddressSanitizer enabled.

If a daemon crashed, then the errorlog is checked for AddressSanitizer output. If found, then this is added with context
(calling test) to /tmp/AddressSanitizer.txt in Markdown compatible format.

Compiling for GCC AddressSanitizer requires to use gcc as a linker as well (instead of 1d). Here is a suggest way to
compile frr with AddressSanitizer for master branch:

git clone https://github.com/FRRouting/frr.git

cd frr

./bootstrap.sh

./configure \
--enable-address-sanitizer \
--prefix=/usr/lib/frr --sysconfdir=/etc/frr \
--localstatedir=/var/run/frr \
--sbindir=/usr/lib/frr --bindir=/usr/lib/frr \
--with-moduledir=/usr/lib/frr/modules \
--enable-multipath=0 --enable-rtadv \
--enable-tcp-zebra --enable-fpm --enable-pimd \
--enable-sharpd

make

sudo make install

Create symlink for vtysh, so topotest finds it in /usr/lib/frr

sudo 1n -s /usr/lib/frr/vtysh /usr/bin/

and create frr user and frrvty group as shown above.

Debugging Topotest Failures

Install and run tests inside tmux or byobu for best results.

XTerm is also fully supported. GNU screen can be used in most situations; however, it does not work as well with
launching vtysh or shell on error.

For the below debugging options which launch programs or CLIs, topotest should be run within tmux (or screen)_, as
gdb, the shell or vtysh will be launched using that windowing program, otherwise xterm will be attempted to launch
the given programs.

NOTE: you must run the topotest (pytest) such that your DISPLAY, STY or TMUX environment variables are carried
over. You can do this by passing the -E flag to sudo or you can modify your /etc/sudoers config to automatically
pass that environment variable through to the sudo environment.

8.1. Topotests 199

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer

FRR Developer’s Manual, Release latest

Spawning Debugging CLI, vtysh or Shells on Routers on Test Failure

One can have a debugging CLI invoked on test failures by specifying the --cli-on-error CLI option as shown in
the example below.

sudo -E pytest --cli-on-error all-protocol-startup

The debugging CLI can run shell or vtysh commands on any combination of routers It can also open shells or vtysh
in their own windows for any combination of routers. This is usually the most useful option when debugging failures.
Here is the help command from within a CLI launched on error:

test_bgp_multiview_topol/test_bgp_routingTable> help

Commands:

help :: this help

sh [hosts] <shell-command> :: execute <shell-command> on <host>
term [hosts] :: open shell terminals for hosts
vtysh [hosts] :: open vtysh terminals for hosts
[hosts] <vtysh-command> :: execute vtysh-command on hosts

test_bgp_multiview_topol/test_bgp_routingTable> rl show int br

—————— Host: rl ------

Interface Status VRF Addresses
erspan® down default

grel® down default

gretap0® down default

lo up default

rl-eth® up default 172.16.1.254/24
rl-stub up default 172.20.0.1/28

test_bgp_multiview_topol/test_bgp_routingTable>

Additionally, one can have vtysh or a shell launched on all routers when a test fails. To launch the given process on
each router after a test failure specify one of --shell-on-error or --vtysh-on-error.

Spawning vtysh or Shells on Routers

Topotest can automatically launch a shell or vtysh for any or all routers in a test. This is enabled by specifying 1 of
2 CLI arguments --shell or --vtysh. Both of these options can be set to a single router value, multiple comma-
seperated values, or all.

When either of these options are specified topotest will pause after setup and each test to allow for inspection of the
router state.

Here’s an example of launching vtysh on routers rt1 and rt2.

sudo -E pytest --vtysh=rtl,rt2 all-protocol-startup

200 Chapter 8. Testing

FRR Developer’s Manual, Release latest

Debugging with GDB

Topotest can automatically launch any daemon with gdb, possibly setting breakpoints for any test run. This is enabled
by specifying 1 or 2 CLI arguments --gdb-routers and --gdb-daemons. Additionally --gdb-breakpoints can
be used to automatically set breakpoints in the launched gdb processes.

Each of these options can be set to a single value, multiple comma-seperated values, or all. If --gdb-routers is
empty but --gdb_daemons is set then the given daemons will be launched in gdb on all routers in the test. Likewise if
--gdb_routers is set, but --gdb_daemons is empty then all daemons on the given routers will be launched in gdb.

Here’s an example of launching zebra and bgpd inside gdb on router r1 with a breakpoint set on nb_config_diff

sudo -E pytest --gdb-routers=rl \
--gdb-daemons=bgpd, zebra \
--gdb-breakpoints=nb_config_diff \
all-protocol-startup

Detecting Memleaks with Valgrind

Topotest can automatically launch all daemons with valgrind to check for memleaks. This is enabled by specifying
1 or 2 CLI arguments. --valgrind-memleaks will enable general memleak detection, and --valgrind-extra
enables extra functionality including generating a suppression file. The suppression file tools/valgrind.supp is
used when memleak detection is enabled.

sudo -E pytest --valgrind-memleaks all-protocol-startup

8.1.3 Running Tests with Docker

There is a Docker image which allows to run topotests.

Quickstart

If you have Docker installed, you can run the topotests in Docker. The easiest way to do this, is to use the make targets
from this repository.

Your current user needs to have access to the Docker daemon. Alternatively you can run these commands as root.

make topotests

This command will pull the most recent topotests image from Dockerhub, compile FRR inside of it, and run the
topotests.

8.1. Topotests 201

FRR Developer’s Manual, Release latest

Advanced Usage

Internally, the topotests make target uses a shell script to pull the image and spawn the Docker container.

There are several environment variables which can be used to modify the behavior of the script, these can be listed by
calling it with -h:

./tests/topotests/docker/frr-topotests.sh -h

For example, a volume is used to cache build artifacts between multiple runs of the image. If you need to force a
complete recompile, you can set TOPOTEST_CLEAN:

TOPOTEST_CLEAN=1 ./tests/topotests/docker/frr-topotests.sh

By default, frr-topotests.sh will build frr and run pytest. If you append arguments and the first one starts with /
or ./, they will replace the call to pytest. If the appended arguments do not match this patttern, they will be provided
to pytest as arguments. So, to run a specific test with more verbose logging:

./tests/topotests/docker/frr-topotests.sh -vv -s all-protocol-startup/test_all_protocol_
< startup.py

And to compile FRR but drop into a shell instead of running pytest:

./tests/topotests/docker/frr-topotests.sh /bin/bash

Development

The Docker image just includes all the components to run the topotests, but not the topotests themselves. So if you just
want to write tests and don’t want to make changes to the environment provided by the Docker image. You don’t need
to build your own Docker image if you do not want to.

When developing new tests, there is one caveat though: The startup script of the container will run a git-clean on
its copy of the FRR tree to avoid any pollution of the container with build artefacts from the host. This will also result
in your newly written tests being unavailable in the container unless at least added to the index with git-add.

If you do want to test changes to the Docker image, you can locally build the image and run the tests without pulling
from the registry using the following commands:

make topotests-build
TOPOTEST_PULL=0 make topotests

8.1.4 Guidelines

Executing Tests

To run the whole suite of tests the following commands must be executed at the top level directory of topotest:

§$ # Change to the top level directory of topotests.

$ cd path/to/topotests

$ # Tests must be run as root, since micronet requires it.
$ sudo -E pytest

In order to run a specific test, you can use the following command:

202 Chapter 8. Testing

FRR Developer’s Manual, Release latest

$ # running a specific topology

sudo -E pytest ospf-topol/

or inside the test folder

cd ospf-topol

sudo -E pytest # to run all tests inside the directory

sudo -E pytest test_ospf_topol.py # to run a specific test

or outside the test folder

cd ..

sudo -E pytest ospf-topol/test_ospf_topol.py # to run a specific one

LR I A s]

The output of the tested daemons will be available at the temporary folder of your machine:

$ 1s /tmp/topotest/ospf-topol.test_ospf-topol/ril

zebra.err # zebra stderr output
zebra.log # zebra log file
zebra.out # zebra stdout output

You can also run memory leak tests to get reports:

§$ # Set the environment variable to apply to a specific test...

$ sudo -E env TOPOTESTS_CHECK_MEMLEAK="/tmp/memleak_report_" pytest ospf-topol/test_ospf_
—topol.py

$ # ...or apply to all tests adding this line to the configuration file

$ echo 'memleak_path = /tmp/memleak_report_' >> pytest.ini

$ # You can also use your editor

§ $EDITOR pytest.ini

$ # After running tests you should see your files:

$ 1s /tmp/memleak_report_*

memleak_report_test_ospf_topol.txt

Writing a New Test

This section will guide you in all recommended steps to produce a standard topology test.
This is the recommended test writing routine:

* Write a topology (Graphviz recommended)

* Obtain configuration files

* Write the test itself

» Format the new code using black

* Create a Pull Request
Some things to keep in mind:

* BGP tests MUST use generous convergence timeouts - you must ensure that any test involving BGP uses a
convergence timeout of at least 130 seconds.

» Topotests are run on a range of Linux versions: if your test requires some OS-specific capability (like mpls
support, or vrf support), there are test functions available in the libraries that will help you determine whether
your test should run or be skipped.

8.1. Topotests 203

https://github.com/psf/black

FRR Developer’s Manual, Release latest

* Avoid including unstable data in your test: don’t rely on link-local addresses or ifindex values, for example,
because these can change from run to run.

» Using sleep is almost never appropriate. As an example: if the test resets the peers in BGP, the test should
look for the peers re-converging instead of just sleeping an arbitrary amount of time and continuing on. See
verify_bgp_convergence as a good example of this. In particular look at it’s use of the @retry decorator. If
you are having troubles figuring out what to look for, please do not be afraid to ask.

* Don’t duplicate effort. There exists many protocol utility functions that can be found in their eponymous module
under tests/topotests/lib/ (e.g., ospf.py)

Topotest File Hierarchy

Before starting to write any tests one must know the file hierarchy. The repository hierarchy looks like this:

$ cd path/to/topotest
$ find ./*

./README.md # repository read me

./GUIDELINES.md # this file

./conftest.py # test hooks - pytest related functions

./example-test # example test folder

./example-test/__init__.py # python package marker - must always exist.
./example-test/test_template.jpg # generated topology picture - see next section
./example-test/test_template.dot # Graphviz dot file
./example-test/test_template.py # the topology plus the test

./ospf-topol # the ospf topology test

./ospf-topol/rl # router 1 configuration files
./ospf-topol/rl/zebra.conf # zebra configuration file
./ospf-topol/rl/ospfd.conf # ospf configuration file
./ospf-topol/rl/ospfroute.txt # 'show ip ospf' output reference file
removed other for shortness sake

./1lib # shared test/topology functions
./lib/topogen.py # topogen implementation
./lib/topotest.py # topotest implementation

Guidelines for creating/editing topotest:
» New topologies that don’t fit the existing directories should create its own
* Always remember to add the __init__.py to new folders, this makes auto complete engines and pylint happy
* Router (Quagga/FRR) specific code should go on topotest.py
* Generic/repeated router actions should have an abstraction in topogen.TopoRouter.
 Generic/repeated non-router code should go to topotest.py

* pytest related code should go to conftest.py (e.g. specialized asserts)

204 Chapter 8. Testing

FRR Developer’s Manual, Release latest

Defining the Topology

The first step to write a new test is to define the topology. This step can be done in many ways, but the recommended
is to use Graphviz to generate a drawing of the topology. It allows us to see the topology graphically and to see the
names of equipment, links and addresses.

Here is an example of Graphviz dot file that generates the template topology tests/topotests/example-test/
test_template.dot (the inlined code might get outdated, please see the linked file):

graph template {
label="template";

Routers

rl [
shape=doubleoctagon,
label="r1",

fillcolor="#f08080",
style=filled,

1;

r2 [
shape=doubleoctagon,
label="r2",
fillcolor="#£f08080",
style=filled,

1;

Switches

sl [
shape=oval,
label="s1\n192.168.0.0/24",
fillcolor="#d0e0d0",
style=filled,

1;

s2 [
shape=oval,
label="s2\n192.168.1.0/24",
fillcolor="#d0e0d0",
style=filled,

1;

Connections
rl -- sl [label="ethO\n.1"];

rl -- s2 [label="ethl\n.100"];
r2 -- s2 [label="eth®\n.1"];
}

Here is the produced graph:

8.1. Topotests 205

FRR Developer’s Manual, Release latest

s2
192.168.1.0/24

192.168.0.0/24

template

Generating / Obtaining Configuration Files

In order to get the configuration files or command output for each router, we need to run the topology and execute
commands in vtysh. The quickest way to achieve that is writing the topology building code and running the topology.

To bootstrap your test topology, do the following steps:

* Copy the template test

$ mkdir new-topo/
$ touch new-topo/__init__.py
$ cp example-test/test_template.py new-topo/test_new_topo.py

* Modify the template according to your dot file

Here is the template topology described in the previous section in python code:

topodef = {

ng1ms Mppn

"s2": ("rl", "r2™
}

If more specialized topology definitions, or router initialization arguments are required a build function can be used
instead of a dictionary:

def build_topo(tgen):
"Build function"

Create 2 routers
for routern in range(1l, 3):
tgen.add_router("r{}". format(routern))

(continues on next page)

206 Chapter 8. Testing

FRR Developer’s Manual, Release latest

(continued from previous page)

Create a switch with just one router connected to it to simulate a
empty network.

switch = tgen.add_switch("s1")

switch.add_link(tgen.gears["r1"])

Create a connection between rl and r2
switch = tgen.add_switch("s2")
switch.add_link(tgen.gears["r1"])
switch.add_link(tgen.gears["r2"])

* Run the topology

Topogen allows us to run the topology without running any tests, you can do that using the following example com-
mands:

$ # Running your bootstraped topology

$ sudo -E pytest -s --topology-only new-topo/test_new_topo.py

$ # Running the test_template.py topology

$ sudo -E pytest -s --topology-only example-test/test_template.py
$ # Running the ospf_topol.py topology

$ sudo -E pytest -s --topology-only ospf-topol/test_ospf_topol.py

Parameters explanation:

-s
Actives input/output capture. If this is not specified a new window will be opened for the interactive CLI, other-
wise it will be activated inline.

--topology-only
Don’t run any tests, just build the topology.

After executing the commands above, you should get the following terminal output:

frr/tests/topotests# sudo -E pytest -s --topology-only ospf_topol/test_ospf_topol.py
test session starts
platform linux -- Python 3.9.2, pytest-6.2.4, py-1.10.0, pluggy-0.13.1
rootdir: /home/chopps/w/frr/tests/topotests, configfile: pytest.ini
plugins: forked-1.3.0, xdist-2.3.0

collected 11 items

[...]

unet>

The last line shows us that we are now using the CLI (Command Line Interface), from here you can call your router
vtysh or even bash.

Here’s the help text:

unet> help

Commands:
help :: this help
sh [hosts] <shell-command> :: execute <shell-command> on <host>
term [hosts] :: open shell terminals for hosts

(continues on next page)

8.1. Topotests 207

FRR Developer’s Manual, Release latest

(continued from previous page)

vtysh [hosts] :: open vtysh terminals for hosts
[hosts] <vtysh-command> :: execute vtysh-command on hosts

Here are some commands example:

unet> sh rl ping 10.0.3.1

PING 10.0.3.1 (10.0.3.1) 56(84) bytes of data.

64 bytes from 10.0.3.1: icmp_seqg=1 ttl=64 time=0.576 ms

64 bytes from 10.0.3.1: icmp_seq=2 ttl=64 time=0.083 ms

64 bytes from 10.0.3.1: icmp_seq=3 ttl=64 time=0.088 ms

AC

--- 10.0.3.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.083/0.249/0.576/0.231 ms

unet> rl show run
Building configuration...

Current configuration:

!

frr version 8.1-dev-my-manual-build

frr defaults traditional

hostname rl

log file /tmp/topotests/ospf_topol.test_ospf_topol/rl/zebra.log
[...]

end

unet> show daemons

—————— Host: rl ------
zebra ospfd ospf6d staticd
——————— End: r1 ---—-—-—-
—————— Host: r2 ------
zebra ospfd ospf6d staticd
——————— End: r2 -----—-
—————— Host: r3 ------
zebra ospfd ospf6d staticd
——————— End: r3 ---—-—--
—————— Host: r4 -----—-
zebra ospfd ospf6d staticd
——————— End: r4 ---—-—--

After you successfully configured your topology, you can obtain the configuration files (per-daemon) using the following
commands:

unet> sh r3 vtysh -d ospfd

Hello, this is FRRouting (version 3.1l-devrzalamena-build).
Copyright 1996-2005 Kunihiro Ishiguro, et al.

rl# show running-config
Building configuration...

(continues on next page)

208 Chapter 8. Testing

FRR Developer’s Manual, Release latest

(continued from previous page)

Current configuration:

|

frr version 3.1-devrzalamena-build
frr defaults traditional
no service integrated-vtysh-config
!

log file ospfd.log

!

router ospf

ospf router-id 10.0.255.3
redistribute kernel

redistribute connected
redistribute static

network 10.0.3.0/24 area 0
network 10.0.10.0/24 area 0
network 172.16.0.0/24 area 1

!
line vty
!

end
rl#

You can also login to the node specified by nsenter using bash, etc. A pid file for each node will be created in the

relevant test dir. You can run scripts inside the node, or use vtysh’s <tab> or <?> feature.

[unet shell]

cd tests/topotests/srv6_locator

./test_srv6_locator.py --topology-only
unet> rl1 show segment-routing srv6 locator
Locator:

Name ID Prefix
locl 1 2001:db8:1:1::/64
loc2 2 2001:db8:2:2::/64

[Another shell]

Status

nsenter -a -t $(cat /tmp/topotests/srv6_locator.test_srv6_locator/r1.pid) bash --norc

vtysh
rl# rl show segment-routing srv6 locator
Locator:

Name ID Prefix
loc1 1 2001:db8:1:1::/64
loc2 2 2001:db8:2:2::/64

Status

8.1. Topotests

209

FRR Developer’s Manual, Release latest

Writing Tests

Test topologies should always be bootstrapped from tests/topotests/example_test/test_template.py be-

cause it contains important boilerplate code that can’t be avoided, like:

Example:

For all routers arrange for:

- starting zebra using config file from <rtrname>/zebra.conf

- starting ospfd using an empty config file.

for rname, router in router_list.items():
router.load_config(TopoRouter.RD_ZEBRA, "zebra.conf")
router.load_config(TopoRouter.RD_OSPF)

* The topology definition or build function

topodef = {
"s1": ("r1", "r2™,
"s2": ("r2", "r3"
}

def build_topo(tgen):
topology build code

* pytest setup/teardown fixture to start the topology and supply tgen argument to tests.

@pytest. fixture(scope="module")
def tgen(request):
"Setup/Teardown the environment and provide tgen argument to tests

tgen = Topogen(topodef, module. name__)
or
tgen = Topogen(build_topo, module._ _name__)

Start and configure the router daemons
tgen.start_router()

Provide tgen as argument to each test function
yield tgen

Teardown after last test runs
tgen.stop_topology()

Requirements:

* Directory name for a new topotest must not contain hyphen (-) characters. To separate words, use underscores

(_). For example, tests/topotests/bgp_new_example.

¢ Test code should always be declared inside functions that begin with the test_ prefix. Functions beginning with

different prefixes will not be run by pytest.

* Configuration files and long output commands should go into separated files inside folders named after the

equipment.

210

Chapter 8. Testing

FRR Developer’s Manual, Release latest

* Tests must be able to run without any interaction. To make sure your test conforms with this, run it without the
- S parameter.

* Use black code formatter before creating a pull request. This ensures we have a unified code style.
* Mark test modules with pytest markers depending on the daemons used during the tests (see Markers)

¢ Always use IPv4 RFC 5737 (192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24) and IPv6 RFC 3849
(2001:db8:: /32) ranges reserved for documentation.

Tips:
» Keep results in stack variables, so people inspecting code with pdb can easily print their values.

Don’t do this:

assert foobar(routerl, router2)

Do this instead:

result = foobar(routerl, router2)
assert result

* Use assert messages to indicate where the test failed.

Example:

for router in router_list:
assert condition, 'Router

condition failed'.format(router.name)

Debugging Execution

The most effective ways to inspect topology tests are:

* Run pytest with --pdb option. This option will cause a pdb shell to appear when an assertion fails
Example: pytest -s --pdb ospf-topol/test_ospf_topol.py

* Set a breakpoint in the test code with pdb

Example:

Add the pdb import at the beginning of the file
import pdb

Add a breakpoint where you think the problem is
def test_bla(Q):
pdb.set_trace()

The Python Debugger (pdb) shell allows us to run many useful operations like:
* Setting breaking point on file/function/conditions (e.g. break, condition)
* Inspecting variables (e.g. p (print), pp (pretty print))

* Running python code

8.1. Topotests 211

https://github.com/psf/black
https://tools.ietf.org/html/rfc5737.html
https://tools.ietf.org/html/rfc3849.html
https://docs.python.org/2.7/library/pdb.html

FRR Developer’s Manual, Release latest

Tip: The TopoGear (equipment abstraction class) implements the __str__ method that allows the user to inspect
equipment information.

Example of pdb usage:

> /media/sf_src/topotests/ospf-topol/test_ospf topol.py(l21)test_ospf_convergence()
-> for rnum in range(1l, 5):

(Pdb) help

Documented commands (type help <topic>):

EOF bt cont enable jump pp run unt

a C continue exit 1 q s until
alias «cl d h list quit step up
args clear debug help n r tbreak w

b commands disable ignore next restart u whatis
break condition down j p return unalias where

Miscellaneous help topics:

exec pdb

Undocumented commands:

retval rv

(Pdb) list

116 title2="Expected output')
117

118 def test_ospf_convergence():

119 "Test OSPF daemon convergence"

120 pdb.set_trace()

121 -> for rnum in range(1l, 5):

122 router = 'r{}'.format(rnum)

123

124 # Load expected results from the command

125 reffile = os.path.join(CWD, '{}/ospfroute.txt'.format(router))
126 expected = open(reffile).read()

(Pdb) step

> /media/sf_src/topotests/ospf-topol/test_ospf topol.py(122)test_ospf_convergence()
-> router = 'r{}'.format(rnum)

(Pdb) step

> /media/sf_src/topotests/ospf-topol/test_ospf_topol.py(125)test_ospf_convergence()
-> reffile = os.path.join(CWD, '{}/ospfroute.txt'.format(router))

(Pdb) print rnum

1

(Pdb) print router

rl

(Pdb) tgen = get_topogen()

(Pdb) pp tgen.gears[router]

<lib.topogen.TopoRouter object at 0x7£f74e06c9850>

(Pdb) pp str(tgen.gears[router])
'TopoGear<name="r1",links=["rl-eth0®"<->"sl-eth0®","rl1-ethl"<->"s3-eth0®"]> TopoRouter<>'

(continues on next page)

212 Chapter 8. Testing

FRR Developer’s Manual, Release latest

(continued from previous page)

(Pdb) 1 125

120 pdb.set_trace()

121 for rnum in range(l, 5):

122 router = 'r{}'.format(rnum)

123

124 # Load expected results from the command

125 > reffile = os.path.join(CWD, '{}/ospfroute.txt'.format(router))
126 expected = open(reffile).read()

127

128 # Run test function until we get an result. Wait at most 60 seconds.
129 test_func = partial (compare_show_ip_ospf, router, expected)
130 result, diff = topotest.run_and_expect(test_func, '',

(Pdb) routerl = tgen.gears[router]
(Pdb) routerl.vtysh_cmd('show ip ospf route')

'============ OSPF network routing table ============\r\nN 10.0.1.0/24 [10].
—area: 0.0.0.0\r\n directly attached to rl-ethO\r\nN 10.0.
—2.0/24 [20] area: 0.0.0.0\r\n via 10.0.3.3, ril-
—ethl\r\nN 10.0.3.0/24 [10] area: 0.0.0.0\r\n .
—directly attached to rl-ethl\r\nN 10.0.10.0/24 [20] area: 0.0.0.0\r\n o
o via 10.0.3.1, rl-ethl\r\nN IA 172.16.0.0/24 [20] area: 0.
—0.0.0\r\n via 10.0.3.1, rl-ethl\r\nN IA 172.16.1.0/24 .
< [30] area: 0.0.0.0\r\n via 10.0.3.1, rl-ethl\r\n\r\
—n============ 0SPF router routing table =============\r\nR 10.0.255.2 o
—[10] area: 0.0.0.0, ASBR\r\n via 10.0.3.3, rl-ethl\r\nR o
—10.0.255.3 [10] area: 0.0.0.0, ABR, ASBR\r\n via,
-10.0.3.1, rl-ethl\r\nR 10.0.255.4 IA [20] area: 0.0.0.0, ASBR\r\n o
o via 10.0.3.1, rl-ethl\r\n\r\n============ 0OSPF external routing table.
w===========\r\n\r\n\r\n'

(Pdb) tgen.cli()

unet>

To enable more debug messages in other Topogen subsystems, more logging messages can be displayed by modifying
the test configuration file pytest.ini:

[topogen]

Change the default verbosity line from 'info'...
#verbosity = info

...to 'debug’

verbosity = debug

Instructions for use, write or debug topologies can be found in Guidelines. To learn/remember common code snippets
see Snippets.

Before creating a new topology, make sure that there isn’t one already that does what you need. If nothing is similar,

then you may create a new topology, preferably, using the newest template (tests/topotests/example-test/
test_template.py).

8.1. Topotests 213

FRR Developer’s Manual, Release latest

8.1.5 Markers

To allow for automated selective testing on large scale continuous integration systems, all tests must be marked with at
least one of the following markers:

* babeld
* bfdd

* bgpd
e eigrpd
* isisd

* ldpd

* nhrpd
* ospfod
* ospfd
* pathd
e pbrd

e pimd
* ripd

* ripngd
e sharpd
* staticd
* vrrpd

The markers corespond to the daemon subdirectories in FRR’s source code and have to be added to tests on a module
level depending on which daemons are used during the test.

The goal is to have continuous integration systems scan code submissions, detect changes to files in a daemons subdi-
rectory and select only tests using that daemon to run to shorten developers waiting times for test results and save test
infrastructure resources.

Newly written modules and code changes on tests, which do not contain any or incorrect markers will be rejected by
reviewers.

Registering markers

The Registration of new markers takes place in the file tests/topotests/pytest.ini:

tests/topotests/pytest.ini

[pytest]

markers =
babeld: Tests that run against BABELD
bfdd: Tests that run against BFDD

vrrpd: Tests that run against VRRPD

214 Chapter 8. Testing

FRR Developer’s Manual, Release latest

Adding markers to tests

Markers are added to a test by placing a global variable in the test module.

Adding a single marker:

import pytest

add after imports, before defining classes or functions:
pytestmark = pytest.mark.bfdd

def test_using_bfdd(Q):

Adding multiple markers:

import pytest

add after imports, before defining classes or functions:
pytestmark = [

pytest.mark.bgpd,

pytest.mark.ospfd,

pytest.mark.ospf6d

def test_using_bgpd_ospfd_ospf6d():

Selecting marked modules for testing

Selecting by a single marker:

pytest -v -m isisd

Selecting by multiple markers:

pytest -v -m "isisd or ldpd or nhrpd"

Further Information

The online pytest documentation provides further information and usage examples for pytest markers.

8.1. Topotests 215

https://docs.pytest.org/en/stable/example/markers.html

FRR Developer’s Manual, Release latest

8.1.6 Snippets

This document will describe common snippets of code that are frequently needed to perform some test checks.

Checking for router / test failures

The following check uses the topogen API to check for software failure (e.g. zebra died) and/or for errors manually set
by Topogen.set_error().

Get the topology reference
tgen = get_topogen()

Check for errors in the topology

if tgen.routers_have_failure():
Skip the test with the topology errors as reason
pytest.skip(tgen.errors)

Checking FRR routers version

This code snippet is usually run after the topology setup to make sure all routers instantiated in the topology have the
correct software version.

Get the topology reference
tgen = get_topogen()

Get the router list
router_list = tgen.routers()

Run the check for all routers
for router in router_list.values():
if router.has_version('<', '3'):
Set topology error, so the next tests are skipped
tgen.set_error('unsupported version')

A sample of this snippet in a test can be found here.

Interacting with equipment

You might want to interact with the topology equipment during the tests and there are different ways to do so.
Notes:

1. When using the Topogen API, all the equipment code derives from Topogear (lib/topogen.py). If you feel brave
you can look by yourself how the abstractions that will be mentioned here work.

2. When not using the Topogen API there is only one way to interact with the equipment, which is by calling the
mininet API functions directly to spawn commands.

216 Chapter 8. Testing

ldp-vpls-topo1/test_ldp_vpls_topo1.py
lib/topogen.py

FRR Developer’s Manual, Release latest

Interacting with the Linux sandbox

Without Topogen:

global net

output = net['rl1'].cmd('echo "foobar""')
print 'output is: ' . format (output)
With Topogen:

tgen = get_topogen()
output = tgen.gears['rl'].run('echo "foobar"")
print 'output is: ' . format (output)

Interacting with VTYSH

Without Topogen:

global net

output = net['rl1'].cmd('vtysh "show ip route" 2>/dev/null')
print 'output is: ' . format (output)

With Topogen:

tgen = get_topogen()
output = tgen.gears['rl'].vtysh_cmd("show ip route")
print 'output is: ' . format (output)

Topogen also supports sending multiple lines of command:

tgen = get_topogen()
output = tgen.gears['rl'].vtysh_cmd(
configure terminal
router bgp 10
bgp router-id 10.0.255.1

neighbor 1.2.3.4 remote-as 10
I

router bgp 11
bgp router-id 10.0.255.2
!

Illlll)

print 'output is: '. format (output)

You might also want to run multiple commands and get only the commands that failed:

tgen = get_topogen()
output = tgen.gears['rl'].vtysh_multicmd(
configure terminal
router bgp 10
bgp router-id 10.0.255.1

neighbor 1.2.3.4 remote-as 10
!

router bgp 11

(continues on next page)

8.1. Topotests 217

FRR Developer’s Manual, Release latest

(continued from previous page)

bgp router-id 10.0.255.2
!

, pretty_output=false)
print 'output is: '. format (output)

Translating vtysh JSON output into Python structures:

tgen = get_topogen()

json_output = tgen.gears['rl'].vtysh_cmd("show ip route json", isjson=True)
output = json.dumps(json_output, indent=4)

print 'output is: ' . format (output)

You can also access the data structure as normal. For example:
protocol = json_output['1.1.1.1/32']['protocol']
assert protocol == "ospf", "wrong protocol"

Note: vtysh_(multi)cmd is only available for router types of equipment.

Invoking mininet CLI

Without Topogen:

CLI(net)

With Topogen:

tgen = get_topogen()
tgen.mininet_cli()

Reading files

Loading a normal text file content in the current directory:

If you are using Topogen

CURDIR = CWD

#

Otherwise find the directory manually:

CURDIR = os.path.dirname(os.path.realpath(__file__))

file_name = '{}/rl1/show_ip_route.txt'.format(CURDIR)
file_content = open(file_name).read()

Loading JSON from a file:

import json

file_name = '{}/rl/show_ip_route.json'.format(CURDIR)
file_content = json.loads(open(file_name).read())

218 Chapter 8. Testing

FRR Developer’s Manual, Release latest

Comparing JSON output

After obtaining JSON output formatted with Python data structures, you may use it to assert a minimalist schema:

tgen = get_topogen()
json_output = tgen.gears['rl'].vtysh_cmd("show ip route json", isjson=True)

expect = {
'1.1.1.1/32": {
'protocol': 'ospf'
}
}

assertmsg = "route 1.1.1.1/32 was not learned through OSPF"
assert json_cmp(json_output, expect) is None, assertmsg

json_cmp function description (it might be outdated, you can find the latest description in the source code at tests/
topotests/lib/topotest.py

JSON compare function. Receives two parameters:
* *dl’: json value
"d2°: json subset which we expect

Returns "None when all keys that “dl1° has matches "d2°,
otherwise a string containing what failed.

Note: key absence can be tested by adding a key with value "None .

Pausing execution

Preferably, choose the sleep function that topotest provides, as it prints a notice during the test execution to help
debug topology test execution time.

Using the topotest sleep
from lib import topotest

topotest.sleep(10, 'waiting 10 seconds for bla')
or just tell it the time:

topotest.sleep(10)

It will print 'Sleeping for 10 seconds'.

Or you can also use the Python sleep, but it won't show anything
from time import sleep
sleep(5)

8.1. Topotests 219

FRR Developer’s Manual, Release latest

iproute2 Linux commands as JSON

topotest has two helpers implemented that parses the output of ip route commands to JSON. It might simplify
your comparison needs by only needing to provide a Python dictionary.

from lib import topotest

tgen = get_topogen()
routes = topotest.ip4_route(tgen.gears['rl'])
expected = {

'10.0.1.0/24": {},

'10.0.2.0/24": {

'dev': 'rl-eth0'

}

3

assertmsg = "failed to find 10.0.1.0/24 and/or 10.0.2.0/24"
assert json_cmp(routes, expected) is None, assertmsg

8.1.7 License

All the configs and scripts are licensed under a ISC-style license. See Python scripts for details.

8.2 Topotests with JSON

8.2.1 Overview

On top of current topotests framework following enhancements are done:

 Creating the topology and assigning IPs to router’ interfaces dynamically. It is achieved by using json file, in
which user specify the number of routers, links to each router, interfaces for the routers and protocol configura-
tions for all routers.

¢ Creating the configurations dynamically. It is achieved by using /usr/1ib/frr/frr-reload.py utility, which
takes running configuration and the newly created configuration for any particular router and creates a delta
file(diff file) and loads it to router.

8.2.2 Logging of test case executions

* The execution log for each test is saved in the test specific directory create under /tmp/topotests (e.g.,
/tmp/topotests/<testdirname.testfilename=>/exec.log)

* Additionally all test logs are captured in the topotest.xml results file. This file will be saved in
/tmp/topotests/topotests.xml. In order to extract the logs for a particular test one can use the analyze.py util-
ity found in the topotests base directory.

* Router’s current configuration, as it is changed during the test, can be displayed on console or sent to logs by
adding show_router_config = True in pytest.ini.

Note: directory “/tmp/topotests/” is created by topotests by default, making use of same directory to save execution
logs.

220 Chapter 8. Testing

FRR Developer’s Manual, Release latest

8.2.3 Guidelines

Writing New Tests

This section will guide you in all recommended steps to produce a standard topology test.
This is the recommended test writing routine:

* Create a json file which will have routers and protocol configurations

* Write and debug the tests

» Format the new code using black

* Create a Pull Request

Note: BGP tests MUST use generous convergence timeouts - you must ensure that any test involving BGP uses a
convergence timeout that is proportional to the configured BGP timers. If the timers are not reduced from their defaults
this means 130 seconds; however, it is highly recommended that timers be reduced from the default values unless the
test requires they not be.

File Hierarchy

Before starting to write any tests one must know the file hierarchy. The repository hierarchy looks like this:

$ cd frr/tests/topotests
$ find ./*

./example_test/

./example_test/test_template_json.json # input json file, having topology, interfaces,..
—bgp and other configuration

./example_test/test_template_json.py # test script to write and execute testcases

./1lib # shared test/topology functions

./1lib/topojson.py # library to create topology and configurations dynamically from json.
—file

./1lib/common_config.py # library to create protocol's common configurations ex- static_
—routes, prefix_lists, route_maps etc.

./1lib/bgp.py # library to create and test bgp configurations

Defining the Topology and initial configuration in JSON file

The first step to write a new test is to define the topology and initial configuration. User has to define topology and
initial configuration in JSON file. Here is an example of JSON file:

BGP neighborship with single phy-link, sample JSON file:
{
"ipv4base": "192.168.0.0",

"ipv4mask": 30,

"ipvbbase": "£fd00::",

"ipvébmask": 64,

"link_ip_start": {"ipv4": "192.168.0.0", "v4mask": 30, "ipv6": "£d00®::", "vemask": 64},

(continues on next page)

8.2. Topotests with JSON 221

https://github.com/psf/black

FRR Developer’s Manual, Release latest

(continued from previous page)

"lo_prefix": {"ipv4": "1.0.
"routers": {

, "vdmask": 32, "ipv6": "2001:DB8:F::", "v6mask": 128},

"r1": {
"links": {
"lo": {"ipv4": "auto", "ipv6": "auto", "type": "loopback"},
"r2": {"ipv4": "auto", "ipv6": "auto"},
"r3": {"ipv4": "auto", "ipv6": "auto"}
1,
"bgp": {
"local_as": "64512",
"address_family": {
"ipv4": {
"unicast": {
"neighbor": {
"r2": {
"dest_link": {
"r1": {}
}
1,
"r3": {
"dest_link": {
"r1": {}
}
}
}
}
}
}
}
1,
"r2": {
"links": {
"lo": {"ipv4": "auto", "ipv6": "auto", "type": "loopback"},
"ri1": {"ipv4": "auto", "ipv6": "auto"},
"r3": {"ipv4": "auto", "ipv6": "auto"}
}!
"bgp": {

"local_as": "64512",
"address_family": {
"ipv4": {
"unicast": {
"redistribute": [
{
"redist_type": "static"
}
1,
"neighbor": {
"r1": {
"dest_link": {
"r2": {}
}
}’

(continues on next page)

222 Chapter 8. Testing

FRR Developer’s Manual, Release latest

(continued from previous page)

"r3": {
"dest_link": {
"r2": {}
}

BGP neighboship with loopback interface, sample JSON file:

{

"ipv4base": "192.168.0.0",

"ipv4mask": 30,

"ipv6base": "£fd0O::",

"ipvémask": 64,

"link_ip_start": {"ipv4": "192.168.0.0", "vdmask": 30, "ipv6e": "fdOO::", "vomask": 64},
"lo_prefix": {"ipv4": "1.0.", "v4mask": 32, "ipv6": "2001:DB8:F::", "vbmask": 128},
"routers": {

"r1": {
"links": {
"lo": {"ipv4": "auto", "ipv6": "auto", "type": "loopback",
"add_static_route":"yes"},
"r2": {"ipv4": "auto", "ipv6": "auto"}
1,
"bgp": {
"local_as": "64512",
"address_family": {
"ipvd": {
"unicast": {
"neighbor": {
"r2": {
"dest_link": {
"lo": {
"source_link": "lo"
}
}
}
}
}
}
}
1
"static_routes": [
{
"network": "1.0.2.17/32",
"next_hop": "192.168.0.1
}

(continues on next page)

8.2. Topotests with JSON 223

FRR Developer’s Manual, Release latest

(continued from previous page)

]
1
"r2": {
"links": {
"lo": {"ipv4": "auto", "ipv6": "auto", "type":
"add_static_route":"yes"},
"ri1": {"ipv4": "auto", "ipv6": "auto"},
"r3": {"ipv4": "auto", "ipv6": "auto"}
1,
"bgp": {
"local_as": "64512",
"address_family": {
"ipv4": {
"unicast": {
"redistribute": [
{
"redist_type": "static"
}
1,
"neighbor": {
"rl1": {
"dest_link": {
"lo": {
"source_link": "lo"
}
}
I
"r3": {
"dest_link": {
"lo": {
"source_link": "lo"
}
}
}
}
}
}
}
1,
"static_routes": [
{
"network": "192.0.20.1/32",
"no_of_ip": 9,
"admin_distance": 100,
"next_hop": "192.168.0.1",
"tag": 4001
}
1,
}

"loopback",

BGP neighborship with Multiple phy-links, sample JSON file:

224

Chapter 8. Testing

FRR Developer’s Manual, Release latest

{
"ipvdbase": "192.168.0.0",

"ipv4mask": 30,

"ipvbbase": "£fd00::",

"ipvémask": 64,

"link_ip_start": {"ipv4": "192.168.0.0", "v4mask": 30, "ipv6": "fd0®::", "vémask": 64},
"lo_prefix": {"ipv4": "1.0.", "vdmask": 32, "ipv6": "2001:DB8:F::", "vbmask": 128},
"routers": {

"r1": {
"links": {
"lo": {"ipv4": "auto", "ipv6": "auto", "type": "loopback"},
"r2-link1": {"ipv4": "auto", "ipv6": "auto"},
"r2-link2": {"ipv4": "auto", "ipv6": "auto"}
1,
"bgp": {
"local_as": "64512",
"address_family": {
"ipvd": {
"unicast": {
"neighbor": {
"r2": {
"dest_link": {
"ri-linkl1": {}
}
}
}
}
}
}
}
3
"r2": {
"links": {
"lo": {"ipv4": "auto", "ipv6": "auto", "type": "loopback"},
"rl-linkl1": {"ipv4": "auto", "ipv6": "auto"},
"r1-link2": {"ipv4": "auto", "ipv6": "auto"},
"r3-link1": {"ipv4": "auto", "ipv6": "auto"},
"r3-link2": {"ipv4": "auto", "ipv6": "auto"}
1,
"bgp": {

"local_as": "64512",
"address_family": {
"ipvd": {
"unicast": {
"redistribute": [

{
"redist_type": "static"
}
1,
"neighbor": {
"r1": {
"dest_link": {
"r2-link1": {}

(continues on next page)

8.2. Topotests with JSON 225

FRR Developer’s Manual, Release latest

(continued from previous page)

}
1,
"r3": {
"dest_link": {
"r2-link1": {}
}

JSON File Explained

Mandatory keywords/options in JSON:

ipv4base : base ipv4 address to generate ips, ex - 192.168.0.0

ipv4mask : mask for ipv4 address, ex - 30

ipv6base : base ipv6 address to generate ips, ex - d00:

ipvémask : mask for ipv6 address, ex - 64

link_ip_start : physical interface base ipv4 and ipv6 address

lo_prefix : loopback interface base ipv4 and ipv6 address

routers : user can add number of routers as per topology, router’s name can be any logical name, ex- rl or a0.
rl : name of the router

1o : loopback interface dict, ipv4 and/or ipv6 addresses generated automatically
type : type of interface, to identify loopback interface

links : physical interfaces dict, ipv4 and/or ipv6 addresses generated automatically

r2-1link1 : it will be used when routers have multiple links. ‘r2’ is router name, ‘link’ is any logical name, ‘1’
is to identify link number, router name and link must be seperated by hyphen (-), ex- a0-peerl

Optional keywords/options in JSON:

bgp : bgp configuration

local_as : Local AS number

unicast : All SAFI configuration

neighbor: All neighbor details

dest_link : Destination link to which router will connect

router_id : bgp router-id

source_link : if user wants to establish bgp neighborship with loopback interface, add source_link: 1o

keepalivetimer : Keep alive timer for BGP neighbor

226

Chapter 8. Testing

FRR Developer’s Manual, Release latest

* holddowntimer : Hold down timer for BGP neighbor
e static_routes : create static routes for routers
e redistribute : redistribute static and/or connected routes

e prefix_lists : create Prefix-lists for routers

Building topology and configurations

Topology and initial configuration as well as teardown are invoked through the use of a pytest fixture:

from lib import fixtures

tgen = pytest.fixture(fixtures.tgen_json, scope="module")

tgen is defined above
topo is a fixture defined in ../conftest.py and automatically available
def test_bgp_convergence(tgen, topo):

bgp_convergence = bgp.verify_bgp_convergence(tgen, topo)

assert bgp_convergence

The fixtures.topo_json function calls topojson.setup_module_from_json() to create and return a new fopogen.Topogen()
object using the JSON config file with the same base filename as the test (i.e., fest_file.py -> test_file.json). Additionally,
the fixture calls zgen.stop_topology() after all the tests have run to cleanup. The function is only invoked once per
file/module (scope="module”), but the resulting object is passed to each function that has rgen as an argument.

For more info on the powerful pytest fixtures feature please see FIXTURES.

Creating configuration files

Router’s configuration would be saved in config file frr_json.conf. Common configurations are like, static routes,
prefixlists and route maps etc configs, these configs can be used by any other protocols as it is. BGP config will be
specific to BGP protocol testing.

* json file is passed to API Topogen() which saves the JSON object in self.json_topo

* The Topogen object is then passed to API build_config_from_json(), which looks for configuration tags in new
JSON object.

« If tag is found in the JSON object, configuration is created as per input and written to file frr_json.conf

* Once JSON parsing is over, frr_json.conf is loaded onto respective router. Config loading is done using ‘vtysh -f
<file>’. Initial config at this point is also saved frr_json_initial.conf. This file can be used to reset configuration
on router, during the course of execution.

* Reset of configuration is done using frr “reload.py” utility, which calculates the difference between router’s
running config and user’s config and loads delta file to router. API used - reset_config_on_router()

8.2. Topotests with JSON 227

https://docs.pytest.org/en/6.2.x/fixture.html

FRR Developer’s Manual, Release latest

Writing Tests

Test topologies should always be bootstrapped from the example_test/test_template_json.py when possible in order to
take advantage of the most recent infrastructure support code.

Example:

* Define a module scoped fixture to setup/teardown and supply the tests with the Topogen object.

import pytest
from lib import fixtures

tgen = pytest.fixture(fixtures.tgen_json, scope="module")

* Define test functions using pytest fixtures

from lib import bgp

tgen is defined above
topo is a global available fixture defined in ../conftest.py
def test_bgp_convergence(tgen, topo):

"Test for BGP convergence."

Don't run this test if we have any failure.
if tgen.routers_have_failure():
pytest.skip(tgen.errors)

bgp_convergence = bgp.verify_bgp_convergence(tgen, topo)
assert bgp_convergence

228 Chapter 8. Testing

CHAPTER
NINE

BGPD

9.1 Next Hop Tracking

Next hop tracking is an optimization feature that reduces the processing time involved in the BGP bestpath algorithm
by monitoring changes to the routing table.

9.1.1 Background

Recursive routes are of the form:

p/m --> n
[Ex: 1.1.0.0/16 --> 2.2.2.2]

where ‘n’ itself is resolved through another route as follows:

p2/m --> h, interface
[Ex: 2.2.2.0/24 --> 3.3.3.3, eth0]

Usually, BGP routes are recursive in nature and BGP nexthops get resolved through an IGP route. IGP usually adds its
routes pointing to an interface (these are called non-recursive routes).

When BGP receives a recursive route from a peer, it needs to validate the nexthop. The path is marked valid or invalid
based on the reachability status of the nexthop. Nexthop validation is also important for BGP decision process as the
metric to reach the nexthop is a parameter to best path selection process.

As it goes with routing, this is a dynamic process. Route to the nexthop can change. The nexthop can become unreach-
able or reachable. In the current BGP implementation, the nexthop validation is done periodically in the scanner run.
The default scanner run interval is one minute. Every minute, the scanner task walks the entire BGP table. It checks
the validity of each nexthop with Zebra (the routing table manager) through a request and response message exchange
between BGP and Zebra process. BGP process is blocked for that duration. The mechanism has two major drawbacks:

* The scanner task runs to completion. That can potentially starve the other tasks for long periods of time, based
on the BGP table size and number of nexthops.

» Convergence around routing changes that affect the nexthops can be long (around a minute with the default
intervals). The interval can be shortened to achieve faster reaction time, but it makes the first problem worse,
with the scanner task consuming most of the CPU resources.

The next-hop tracking feature makes this process event-driven. It eliminates periodic nexthop validation and introduces
an asynchronous communication path between BGP and Zebra for route change notifications that can then be acted
upon.

229

FRR Developer’s Manual, Release latest

9.1.2 Goal

Stating the obvious, the main goal is to remove the two limitations we discussed in the previous section. The goals, in
a constructive tone, are the following:

¢ Fairness: the scanner run should not consume an unjustly high amount of CPU time. This should give an overall
good performance and response time to other events (route changes, session events, IO/user interface).

¢ Convergence: BGP must react to nexthop changes instantly and provide sub-second convergence. This may
involve diverting the routes from one nexthop to another.

9.1.3 Overview of changes

The changes are in both BGP and Zebra modules. The short summary is the following:

e Zebra implements a registration mechanism by which clients can register for next hop notification. Consequently,
it maintains a separate table, per (VRF, AF) pair, of next hops and interested client-list per next hop.

¢ When the main routing table changes in Zebra, it evaluates the next hop table: for each next hop, it checks if the
route table modifications have changed its state. If so, it notifies the interested clients.

* BGP is one such client. It registers the next hops corresponding to all of its received routes/paths. It also threads
the paths against each nexthop structure.

¢ When BGP receives a next hop notification from Zebra, it walks the corresponding path list. It makes them valid
or invalid depending on the next hop notification. It then re-computes best path for the corresponding destination.
This may result in re-announcing those destinations to peers.

9.1.4 Design
Modules

The core design introduces an “nht” (next hop tracking) module in BGP and “rnh” (recursive nexthop) module in Zebra.
The “nht” module provides the following APIs:

Function Action
bgp_find_or_add_nexthop() | find or add a nexthop in BGP nexthop table
bgp_parse_nexthop_update() | parse a nexthop update message coming from zebra

The “rnh” module provides the following APIs:

Function Action

zebra_add_rnh() add a recursive nexthop

zebra_delete_rnh() delete a recursive nexthop

zebra_lookup_rnh() lookup a recursive nexthop

ze- register a client for nexthop notifications against a recursive nexthop
bra_add_rnh_client()

ze- remove the client registration for a recursive nexthop

bra_remove_rnh_client(

ze- (re)evaluate the recursive nexthop table (most probably because the main routing table
bra_evaluate_rnh_table() has changed).

ze- Cleanup a client from the “rnh” module data structures (most probably because the client
bra_cleanup_rnh_client() is going away).

230 Chapter 9. BGPD

FRR Developer’s Manual, Release latest

4.2. Control flow

The next hop registration control flow is the following:

<==== BGP Process ====>|<==== Zebra Process ====>
|
receive module nht module | zserv module rnh module
bgp_update_
main() bgp_find_or_add_

nexthop ()

zserv_nexthop_
register()
zebra_add_rnh()

The next hop notification control flow is the following:

<==== Zebra Process ====>|<==== BGP Process ====>

rib module rnh module | zebra module nht module

meta_queue_
process() zebra_evaluate_

rnh_table()

bgp_read_nexthop_
update()

bgp_parse_

nexthop_update()

zclient message format

ZEBRA_NEXTHOP_REGISTER and ZEBRA_NEXTHOP_UNREGISTER messages are encoded in the following
way

. 0 1 2 3

©12345678901234567890123456789601

s e T s St A s Tt St e

| AF | prefix len |

t-t—t—t -ttt -ttt —F—t—F -ttt —F—F—F -+ttt —F—+—F+—+
Nexthop prefix

s s st o S S s sty S
s T St S e s et S s e St S

AF | prefix len |
s e s st T S s S T e e S e R

(continues on next page)

9.1. Next Hop Tracking 231

FRR Developer’s Manual, Release latest

(continued from previous page)

Nexthop prefix

e e e e At e

ZEBRA_NEXTHOP_UPDATE message is encoded as follows:

. 0 1 2 3

©1234567890123456789012345678901

Fot—t—t -ttt -ttt —F—t—F—t—F -ttt —F—+—+

| AF | prefix len |

s s st e S e s S e s e e st
Nexthop prefix getting resolved

——t—t -ttt -ttt -ttt -ttt —F—F -t —F—F -+ —F+—+—+
metric

——t—t—t—F—t—t -+ttt —F -t -ttt —F—F -ttt -+ —F-+—+
#nexthops |

R s s e e A st s SR S S S

nexthop type |

e s st B S e s sty S e e R O s

resolving Nexthop details

+ — + — + — + -

e A S e S s st s e et

+ot—t—t—t—F -t -ttt -ttt -ttt —F—F -t —F—F -+ —F—+—+

| nexthop type |

+-d-+—F-Ft—F—+-F-F—F -+ttt —F—F—F—F—F -ttt —F—F -+t —F—F -+ —+—+—+
resolving Nexthop details

i e T T B s A s e S T S S Sl S S B B R

BGP data structure

Legend:

/\ struct bgp_node: a BGP destination/route/prefix
\/

[1 struct bgp_path_info: a BGP path (e.g. route received from a peer)

(L) struct bgp_nexthop_cache: a BGP nexthop

/\ NULL
\/=—+ 5
| :
+--[1--[1--[1--> NULL
/\ :
\/=-+

| :
+--[1--[1--> NULL

(continues on next page)

232 Chapter 9. BGPD

FRR Developer’s Manual, Release latest

(continued from previous page)

Zebra data structure

RNH table:

. 0
/ N\
0O O

/\
0 0

struct rnh
{
uint8_t flags;
struct route_entry *state;
struct list *client_list;
struct route_node *node;

1

User interface changes

frr# show ip nht

3.3.3.3

resolved via kernel

via 11.0.0.6, swpl

Client list: bgp(fd 12)
11.0.0.10

resolved via connected

is directly connected, swp2
Client list: bgp(fd 12)
11.0.0.18

resolved via connected

is directly connected, swp4
Client list: bgp(fd 12)
11.11.11.11

resolved via kernel

via 10.0.1.2, eth®

Client list: bgp(fd 12)

frr# show ip bgp nexthop
Current BGP nexthop cache:

3.3.3.3 valid [IGP metric 0], #paths 3
Last update: Wed Oct 16 04:43:49 2013

11.0.0.10 valid [IGP metric 1], #paths 1
Last update: Wed Oct 16 04:43:51 2013

(continues on next page)

9.1. Next Hop Tracking

233

FRR Developer’s Manual, Release latest

(continued from previous page)

11.0.0.18 valid [IGP metric 1], #paths 2
Last update: Wed Oct 16 04:43:47 2013

11.11.11.11 valid [IGP metric 0], #paths 1
Last update: Wed Oct 16 04:43:47 2013

frr# show ipv6 nht
frr# show ip bgp nexthop detail

frr# debug bgp nht
frr# debug zebra nht

6. Sample test cases

r2----r3

/ N/

rl----r4

- Verify that a change in IGP cost triggers NHT
+ shutdown the rl-r4 and r2-r4 links
+ no shut the rl-r4 and r2-r4 links and wait for OSPF to come back
up
+ We should be back to the original nexthop via r4 now
- Verify that a NH becoming unreachable triggers NHT
+ Shutdown all links to r4
- Verify that a NH becoming reachable triggers NHT
+ no shut all links to r4

Future work

* route-policy for next hop validation (e.g. ignore default route)
¢ damping for rapid next hop changes
* prioritized handling of nexthop changes ((un)reachability vs. metric changes)

* handling recursion loop, e.g:

11.11.11.11/32 -> 12.12.12.12
12.12.12.12/32 -> 11.11.11.11
11.0.0.0/8 -> <interface>

¢ better statistics

234 Chapter 9. BGPD

FRR Developer’s Manual, Release latest

9.2 BGP-4[+] UPDATE Attribute Preprocessor Constants

This is a list of preprocessor constants that map to BGP attributes defined by various BGP RFCs. In the code these are
defined as BGP_ATTR_<ATTR>.

Value Attribute References

1234 | ORIGIN AS_PATH NEXT _HOP MULTI_EXIT_DISC | [RFC 4271] [RFC 4271] [RFC 4271]
5678 | LOCAL_PREF ATOMIC_AGGREGATE AGGRE- | [RFC 4271] [RFC 4271] [RFC 4271]
91014 | GATOR COMMUNITIES ORIGINATOR_ID CLUS- | [RFC 4271] [RFC 1997] [RFC 4456]
15 16 | TER_LIST MP_REACH_NLRI MP_UNREACH_NLRI | [RFC 4456] [RFC 4760] [RFC 4760]
17 18 EXT_COMMUNITIES AS4_PATH AS4_AGGREGATOR | [RFC 4360] [RFC 4893] [RFC 4893]

9.2. BGP-4[+] UPDATE Attribute Preprocessor Constants 235

FRR Developer’s Manual, Release latest

236 Chapter 9. BGPD

CHAPTER
TEN

FPM

FPM stands for Forwarding Plane Manager and it’s a module for use with Zebra.

The encapsulation header for the messages exchanged with the FPM is defined by the file fpm/fpm.h in the frr tree.
The routes themselves are encoded in Netlink or protobuf format, with Netlink being the default.

Netlink is standard format for encoding messages to talk with kernel space in Linux and it is also the name of the socket
type used by it. The FPM netlink usage differs from Linux’s in:

* Linux netlink sockets use datagrams in a multicast fashion, FPM uses as a stream and it is unicast.

* FPM netlink messages might have more or less information than a normal Linux netlink socket message (example:
RTM_NEWROUTE might add an extra route attribute to signalize VXLAN encapsulation).

Protobuf is one of a number of new serialization formats wherein the message schema is expressed in a purpose-built
language. Code for encoding/decoding to/from the wire format is generated from the schema. Protobuf messages can
be extended easily while maintaining backward-compatibility with older code. Protobuf has the following advantages
over Netlink:

* Code for serialization/deserialization is generated automatically. This reduces the likelihood of bugs, allows
third-party programs to be integrated quickly, and makes it easy to add fields.

* The message format is not tied to an OS (Linux), and can be evolved independently.

Note: Currently there are two FPM modules in zebra:
e fpm
e dplane_£fpm_nl

10.1 fpm

The first FPM implementation that was built using hooks in zebra route handling functions. It uses its own
netlink/protobuf encoding functions to translate zebra route data structures into formatted binary data.

237

FRR Developer’s Manual, Release latest

10.2 dplane_fpm_nl

The newer FPM implementation that was built using zebra’s data plane framework as a plugin. It only supports netlink
and it shares zebra’s netlink functions to translate route event snapshots into formatted binary data.

10.2.1 Protocol Specification
FPM (in any mode) uses a TCP connection to talk with external applications. It operates as TCP client and uses the
CLI configured address/port to connect to the FPM server (defaults to port 2620).

FPM frames all data with a header to help the external reader figure how many bytes it has to read in order to read the
full message (this helps simulates datagrams like in the original netlink Linux kernel usage).

Frame header:

0 1 2 3
01234567890123456789012345678901
o B e e T B et ettt +
| Version | Message type | Message length |
Fmm e e R T +
| Data |
i it ittt e e P +

10.3 Version

Currently there is only one version, so it should be always 1.

10.4 Message Type

Defines what underlining protocol we are using: netlink (1) or protobuf (2).

10.5 Message Length

Amount of data in this frame in network byte order.

10.6 Data

The netlink or protobuf message payload.

238 Chapter 10. FPM

CHAPTER
ELEVEN

NORTHBOUND GRPC

To enable gRPC support one needs to add —enable-grpc when running configure. Additionally, when launching each
daemon one needs to request the gRPC module be loaded and which port to bind to. This can be done by adding -M
grpc:<port> to the daemon’s CLI arguments.

Currently there is no gRPC “routing” so you will need to bind your gRPC channel to the particular daemon’s gRPC
port to interact with that daemon’s gRPC northbound interface.

The minimum version of gRPC known to work is 1.16.1.

11.1 Programming Language Bindings

The gRPC supported programming language bindings can be found here: https://grpc.io/docs/languages/

After picking a programming language that supports gRPC bindings, the next step is to generate the FRR northbound
bindings. To generate the northbound bindings you’ll need the programming language binding generator tools and
those are language specific.

11.1.1 C++ Example

The next sections will use C++ as an example for accessing FRR northbound through gRPC.

Generating C++ FRR Bindings

Generating FRR northbound bindings for C++ example:

Install gRPC (e.g., on Ubuntu 20.04)
sudo apt-get install libgrpc++-dev libgrpc-dev

mkdir /tmp/frr-cpp
cd grpc

protoc --cpp_out=/tmp/frr-cpp \
--grpc_out=/tmp/frr-cpp \
-I $(pwd) \
--plugin=protoc-gen-grpc="which grpc_cpp_plugin’ \
frr-northbound.proto

239

https://grpc.io/docs/languages/

FRR Developer’s Manual, Release latest

Using C++ To Get Version and Interfaces State

Below is a sample program to print all interfaces discovered.

test.cpp

#include <string>

#include <sstream>

#include <grpc/grpc.h>

#include <grpcpp/create_channel.h>
#include "frr-northbound.pb.h"
#include "frr-northbound.grpc.pb.h"

int main() {
frr::GetRequest request;
frr::GetResponse reply;
grpc::ClientContext context;
grpc::Status status;

auto channel = grpc::CreateChannel("localhost:50051",

grpc: :InsecureChannelCredentials());

auto stub = frr::Northbound: :NewStub(channel);

request.set_type(frr::GetRequest::ALL);
request.set_encoding(frr::JSON);
request.set_with_defaults(true);
request.add_path("/frr-interface:1ib");
auto stream = stub->Get(&context, request);

std::ostringstream ss;
while (stream->Read(&reply))
ss << reply.data().data() << std::endl;

status = stream->Finish();
assert(status.ok(Q));
std::cout << "Interface Info:\n" << ss.str() << std::endl;

Below is how to compile and run the program, with the example output:

$ g++ -0 test test.cpp frr-northbound.grpc.pb.cc frr-northbound

$§ ./test
Interface Info:
{

"frr-interface:1lib": {
"interface": [

{

"name": "lo",

"vrf": "default",

"state": {
"if-index": 1,
"mtu": O,
"mtu6": 65536,
"speed": 0,

"metric": O,

.pb.cc -lgrpc++ -lprotobuf

(continues on next page)

240 Chapter 11. Northbound gRPC

FRR Developer’s Manual, Release latest

(continued from previous page)

"phy-address": "00:00:00:00:00:00"
1,
"frr-zebra:zebra": {
"state": {
"up-count": 0,
"down-count": O,
"ptm-status": "disabled"
}
}
1,
{
"name": "rl-eth®",
"vrf": "default",
"state": {
"if-index": 2,
"mtu": 1500,
"mtu6e": 1500,
"speed": 10000,
"metric": O,
"phy-address": "02:37:ac:63:59:b9"
1
"frr-zebra:zebra": {
"state": {
"up-count": 0,
"down-count": O,
"ptm-status": "disabled"
}
}
}
]

1,

"frr-zebra:zebra": {
"mcast-rpf-lookup": "mrib-then-urib",
"workqueue-hold-timer": 10,
"zapi-packets": 1000,
"import-kernel-table": {

"distance": 15
1,
"dplane-queue-limit": 200

11.1. Programming Language Bindings 241

FRR Developer’s Manual, Release latest

11.1.2 Python Example

The next sections will use Python as an example for writing scripts to use the northbound.

Generating Python FRR Bindings

Generating FRR northbound bindings for Python example:

Install python3 virtual environment capability e.g.,
sudo apt-get install python3-venv

Create a virtual environment for python grpc and activate
python3 -m venv venv-grpc
source venv-grpc/bin/activate

Install grpc requirements
pip install grpcio grpcio-tools

mkdir /tmp/frr-python
cd grpc

python3 -m grpc_tools.protoc \
--python_out=/tmp/frr-python \
--grpc_python_out=/tmp/frr-python \
-I $(pwd) \
frr-northbound.proto

Using Python To Get Capabilities and Interfaces State

Below is a sample script to print capabilities and all interfaces Python discovered. This demostrates the 2 different
RPC results one gets from gRPC, Unary (GetCapabilities) and Streaming (Get) for the interface state.

import grpc
import frr_northbound_pb2
import frr_northbound_pb2_grpc

channel = grpc.insecure_channel('localhost:50051")
stub = frr_northbound_pb2_grpc.NorthboundStub(channel)

Print Capabilities

request = frr_northbound_pb2.GetCapabilitiesRequest()
response = stub.GetCapabilities(request)

print (response)

Print Interface State and Config

request = frr_northbound_pb2.GetRequest()
request.path.append("/frr-interface:1ib")
request.type=frr_northbound_pb2.GetRequest.ALL
request.encoding=frr_northbound_pb2.XML

for r in stub.Get(request):
print(r.data.data)

242 Chapter 11. Northbound gRPC

FRR Developer’s Manual, Release latest

The previous script will output something like:

frr_version: "7.7-dev-my-manual-build"

rollback_support: true

supported_modules {
name: "frr-filter"
organization: "FRRouting"
revision: "2019-07-04"

}

supported_modules {
name: "frr-interface"
organization: "FRRouting"
revision: "2020-02-05"

}

[...]

supported_encodings: JSON

supported_encodings: XML

<1lib xmlns="http://frrouting.org/yang/interface">
<interface>
<name>lo</name>
<vrf>default</vrf>
<state>
<if-index>1</if-index>
<mtu>0</mtu>
<mtu6>65536</mtu6>
<speed>0</speed>
<metric>0</metric>
<phy-address>00:00:00:00:00:00</phy-address>
</state>
<zebra xmlns="http://frrouting.org/yang/zebra">
<state>
<up-count>0</up-count>
<down-count>0</down-count>
</state>
</zebra>
</interface>
<interface>
<name>rl-eth0®</name>
<vri>default</vrf>
<state>
<if-index>2</if-index>
<mtu>1500</mtu>
<mtu6>1500</mtu6>
<speed>10000</speed>
<metric>0</metric>
<phy-address>£f2:62:2e:f3:4c:ed4</phy-address>
</state>
<zebra xmlns="http://frrouting.org/yang/zebra">
<state>
<up-count>0</up-count>
<down-count>0</down-count>
</state>

(continues on next page)

11.1. Programming Language Bindings 243

FRR Developer’s Manual, Release latest

(continued from previous page)

</zebra>
</interface>
</1lib>

11.1.3 Ruby Example

Next sections will use Ruby as an example for writing scripts to use the northbound.

Generating Ruby FRR Bindings

Generating FRR northbound bindings for Ruby example:

Install the required gems:

- grpc: the gem that will talk with FRR's gRPC plugin.
- grpc-tools: the gem that provides the code generator.
gem install grpc

gem install grpc-tools

Create your project/scripts directory:
mkdir /tmp/frr-ruby

Go to FRR's grpc directory:
cd grpc

Generate the ruby bindings:

grpc_tools_ruby_protoc \
--ruby_out=/tmp/frr-ruby \
--grpc_out=/tmp/frr-ruby \
frr-northbound.proto

Using Ruby To Get Interfaces State

Here is a sample script to print all interfaces FRR discovered:

require 'frr-northbound_services_pb'

Create the connection with FRR's gRPC:
stub = Frr::Northbound::Stub.new('localhost:50051"', :this_channel_is_insecure)

Create a new state request to get interface state:
request = Frr::GetRequest.new

request.type = :STATE
request.path.push('/frr-interface:1ib")

Ask FRR.
response = stub.get(request)

Print the response.
response.each do |result|

(continues on next page)

244 Chapter 11. Northbound gRPC

FRR Developer’s Manual, Release latest

(continued from previous page)

result.data.data.each_line do |[line|
puts line
end
end

Note: The generated files will assume that they are in the search path (e.g. inside gem) so you’ll need to either edit it
to use require_relative or tell Ruby where to look for them. For simplicity we’ll use -I . to tell it is in the current
directory.

The previous script will output something like this:

$ cd /tmp/frr-ruby
Add "-I." so ruby finds the FRR generated file locally.
$ ruby -I. interface.rb
{
"frr-interface:1ib": {
"interface": [
{
"name": "eth0®",
"vrf": "default",
"state": {
"if-index": 2,
"mtu": 1500,
"mtu6": 1500,
"speed": 1000,
"metric": O,
"phy-address": "11:22:33:44:55:66"
1
"frr-zebra:zebra": {
"state": {
"up-count": 0,
"down-count": 0

"name": "lo",
"vrf": "default",
"state": {
"if-index": 1,
"mtu": O,
"mtu6": 65536,
"speed": 0,
"metric": 0,
"phy-address": "00:00:00:00:00:00"
1
"frr-zebra:zebra": {
"state": {
"up-count": 0,
"down-count": 0

(continues on next page)

11.1. Programming Language Bindings 245

FRR Developer’s Manual, Release latest

(continued from previous page)

Using Ruby To Create BFD Profiles

In this example you’ll learn how to edit configuration using JSON and programmatic (XPath) format.

require 'frr-northbound_services_pb'

Create the connection with FRR's gRPC:
stub = Frr::Northbound::Stub.new('localhost:50051"', :this_channel_is_insecure)

Create a new candidate configuration change.
new_candidate = stub.create_candidate(Frr::CreateCandidateRequest.new)

Use JSON to configure.

request = Frr::LoadToCandidateRequest.new
request.candidate_id = new_candidate.candidate_id
request.type = :MERGE

request.config = Frr::DataTree.new

request.config.encoding = :JSON
request.config.data = <<-E0J

{

"frr-bfdd:bfdd": {
"bfd": {
"profile": [
{
"name": "test-prof",

"detection-multiplier": 4,
"required-receive-interval": 800000

EOJ

Load configuration to candidate.
stub.load_to_candidate(request)

Commit candidate.
stub. commit (
Frr::CommitRequest.new(
candidate_id: new_candidate.candidate_id,
phase: :ALL,
comment: 'create test-prof'

(continues on next page)

246 Chapter 11. Northbound gRPC

FRR Developer’s Manual, Release latest

(continued from previous page)

#
Now lets delete the previous profile and create a new one.
#

Create a new candidate configuration change.
new_candidate = stub.create_candidate(Frr::CreateCandidateRequest.new)

Edit the configuration candidate.
request = Frr::EditCandidateRequest.new
request.candidate_id = new_candidate.candidate_id

Delete previously created profile.
request.delete.push(
Frr::PathValue.new(
path: "/frr-bfdd:bfdd/bfd/profile[name="test-prof']",
)
)

Add new profile with two configurations.
request.update.push(
Frr::PathValue.new(
path: "/frr-bfdd:bfdd/bfd/profile[name="test-prof-2']/detection-multiplier",
value: 5.to_s
)
)
request.update.push(
Frr::PathValue.new(
path: "/frr-bfdd:bfdd/bfd/profile[name="test-prof-2']/desired-transmission-interval",
value: 900_000.to_s
)
)

Modify the candidate.
stub.edit_candidate(request)

Commit the candidate configuration.
stub.commit
Frr::CommitRequest.new(
candidate_id: new_candidate.candidate_id,
phase: :ALL,
comment: 'replace test-prof with test-prof-2'

And here is the new FRR configuration:

$ sudo vtysh -c 'show running-config'
bfd
profile test-prof-2
detect-multiplier 5

(continues on next page)

11.1. Programming Language Bindings 247

FRR Developer’s Manual, Release latest

(continued from previous page)

transmit-interval 900
!
!

248 Chapter 11. Northbound gRPC

CHAPTER
TWELVE

OSPFD

12.1 OSPF API Documentation

12.1.1 Disclaimer

The OSPF daemon contains an API for application access to the LSA database. This API and documentation was
created by Ralph Keller, originally as patch for Zebra. Unfortunately, the page containing documentation for the API is
no longer online. This page is an attempt to recreate documentation for the API (with lots of help from the WayBack-
Machine).

Ralph has kindly licensed this documentation under GPLv2+. Please preserve the acknowledgements at the bottom of
this document.

12.1.2 Introduction

This page describes an API that allows external applications to access the link-state database (LSDB) of the OSPF
daemon. The implementation is based on the OSPF code from FRRouting (forked from Quagga and formerly Zebra)
routing protocol suite and is subject to the GNU General Public License. The OSPF API provides you with the following
functionality:

 Retrieval of the full or partial link-state database of the OSPF daemon. This allows applications to obtain an exact
copy of the LSDB including router LSAs, network LSAs and so on. Whenever a new LSA arrives at the OSPF
daemon, the API module immediately informs the application by sending a message. This way, the application
is always synchronized with the LSDB of the OSPF daemon.

* Origination of own opaque LSAs (of type 9, 10, or 11) which are then distributed transparently to other routers
within the flooding scope and received by other applications through the OSPF API.

Opaque LSAs, which are described in RFC 2370, allow you to distribute application-specific information within a
network using the OSPF protocol. The information contained in opaque LSAs is transparent for the routing process
but it can be processed by other modules such as traffic engineering (e.g., MPLS-TE).

249

https://tools.ietf.org/html/rfc2370.html

FRR Developer’s Manual, Release latest

12.1.3 Architecture

The following picture depicts the architecture of the Quagga/Zebra protocol suite. The OSPF daemon is extended with
opaque LSA capabilities and an API for external applications. The OSPF core module executes the OSPF protocol by
discovering neighbors and exchanging neighbor state. The opaque module, implemented by Masahiko Endo, provides
functions to exchange opaque LSAs between routers. Opaque LSAs can be generated by several modules such as the
MPLS-TE module or the API server module. These modules then invoke the opaque module to flood their data to
neighbors within the flooding scope.

The client, which is an application potentially running on a different node than the OSPF daemon, links against the
OSPF API client library. This client library establishes a socket connection with the API server module of the OSPF
daemon and uses this connection to retrieve LSAs and originate opaque LSAs.

Retrieve LSAs and
originate own opaque
LSAs
_ Opaque
Client module BGP RIP
App
OSPF
care
i i }
Zebra
Y ____ .
Y
Kernel
Fig. 1: image

The OSPF API server module works like any other internal opaque module (such as the MPLS-TE module), but listens
to connections from external applications that want to communicate with the OSPF daemon. The API server module
can handle multiple clients concurrently.

One of the main objectives of the implementation is to make as little changes to the existing Zebra code as possible.

12.1.4 Installation & Configuration

Download FRRouting and unpack it.

Configure and build FRR (note that --enable-opaque-1sa also enables the ospfapi server and ospfclient).

% sh ./configure --enable-opaque-lsa
% make

This should also compile the client library and sample application in ospfclient.

250 Chapter 12. OSPFD

FRR Developer’s Manual, Release latest

Make sure that you have enabled opaque LSAs in your configuration. Add the ospf opaque-1lsa statement to your
ospfd.conf:

I -*- ospf -*-

]

! OSPFd sample configuration file
]

|

hostname xxxxx

password XXXXX

router ospf
router-id 10.0.0.1
network 10.0.0.1/24 area 1
neighbor 10.0.0.2
network 10.0.1.2/24 area 1
neighbor 10.0.1.1
ospf opaque-1lsa <============ add this statement!

12.1.5 Usage

In the following we describe how you can use the sample application to originate opaque LSAs. The sample application
first registers with the OSPF daemon the opaque type it wants to inject and then waits until the OSPF daemon is ready
to accept opaque LSAs of that type. Then the client application originates an opaque LSA, waits 10 seconds and then
updates the opaque LSA with new opaque data. After another 20 seconds, the client application deletes the opaque
LSA from the LSDB. If the clients terminates unexpectedly, the OSPF API module will remove all the opaque LSAs
that the application registered. Since the opaque LSAs are flooded to other routers, we will see the opaque LSAs in all
routers according to the flooding scope of the opaque LSA.

We have a very simple demo setup, just two routers connected with an ATM point-to-point link. Start the modified
OSPF daemons on two adjacent routers. First run on msr2:

./ospfd --apiserver -f /usr/local/etc/ospfd.conf

And on the neighboring router msr3:

./ospfd --apiserver -f /usr/local/etc/ospfd.conf

Now the two routers form adjacency and start exchanging their databases. Looking at the OSPF daemon of msr2 (or
msr3), you see this:

ospfd> show ip ospf database
OSPF Router with ID (10.0.0.1)

Router Link States (Area 0.0.0.1)

Link ID ADV Router Age Seq# CkSum Link count
10.0.0.1 10.0.0.1 55 0x80000003 0xc62f 2
10.0.0.2 10.0.0.2 55 0x80000003 0xe3e4 3

Net Link States (Area 0.0.0.1)

(continues on next page)

12.1. OSPF APl Documentation 251

FRR Developer’s Manual, Release latest

(continued from previous page)

Link ID ADV Router Age Seq# CkSum
10.0.0.2 10.0.0.2 60 0x80000001 Ox5fch

Now we start the sample main application that originates an opaque LSA.

cd ospfapi/apiclient
./main msr2 10 250 20 0.0.0.0 0.0.0.1

This originates an opaque LSA of type 10 (area local), with opaque type 250 (experimental), opaque id of 20 (chosen
arbitrarily), interface address 0.0.0.0 (which is used only for opaque LSAs type 9), and area 0.0.0.1

Again looking at the OSPF database you see:

ospfd> show ip ospf database
OSPF Router with ID (10.0.0.1)

Router Link States (Area 0.0.0.1)

Link ID ADV Router Age Seq# CkSum Link count
10.0.0.1 10.0.0.1 437 0x80000003 0xc62f 2
10.0.0.2 10.0.0.2 437 0x80000003 Oxe3e4d 3

Net Link States (Area 0.0.0.1)

Link ID ADV Router Age Seq# CkSum
10.0.0.2 10.0.0.2 442 0x80000001 0x5fcb

Area-Local Opaque-LSA (Area 0.0.0.1)

Opaque-Type/Id ADV Router Age Seq# CkSum
250.0.0.20 10.0.0.1 0 0x80000001 0x58a6 <=== opaque LSA

You can take a closer look at this opaque LSA:

ospfd> show ip ospf database opaque-area

OSPF Router with ID (10.0.0.1)

Area-Local Opaque-LSA (Area 0.0.0.1)

LS age: 4

Options: 66

LS Type: Area-Local Opaque-LSA

Link State ID: 250.0.0.20 (Area-Local Opaque-Type/ID)
Advertising Router: 10.0.0.1

LS Seq Number: 80000001

Checksum: 0x58a6

Length: 24

Opaque-Type 250 (Private/Experimental)
Opaque-ID 0x14

Opaque-Info: 4 octets of data

(continues on next page)

252 Chapter 12. OSPFD

FRR Developer’s Manual, Release latest

(continued from previous page)

Added using OSPF API: 4 octets of opaque data
Opaque data: 1 ® ® ® <==== counter is 1

Note that the main application updates the opaque LSA after 10 seconds, then it looks as follows:

ospfd> show ip ospf database opaque-area

OSPF Router with ID (10.0.0.1)

Area-Local Opaque-LSA (Area 0.0.0.1)

LS age: 1

Options: 66

LS Type: Area-Local Opaque-LSA

Link State ID: 250.0.0.20 (Area-Local Opaque-Type/ID)
Advertising Router: 10.0.0.1

LS Seq Number: 80000002

Checksum: 0x59a3

Length: 24

Opaque-Type 250 (Private/Experimental)
Opaque-1ID 0x14

Opaque-Info: 4 octets of data

Added using OSPF API: 4 octets of opaque data
Opaque data: 2 ® ® O <==== counter is now 2

Note that the payload of the opaque LSA has changed as you can see above.
Then, again after another 20 seconds, the opaque LSA is flushed from the LSDB.

Important note:

In order to originate an opaque LSA, there must be at least one active opaque-capable neighbor. Thus, you cannot
originate opaque LSAs if no neighbors are present. If you try to originate when no neighbors are ready, you will
receive a not ready error message. The reason for this restriction is that it might be possible that some routers have an
identical opaque LSA from a previous origination in their LSDB that unfortunately could not be flushed due to a crash,
and now if the router comes up again and starts originating a new opaque LSA, the new opaque LSA is considered
older since it has a lower sequence number and is ignored by other routers (that consider the stalled opaque LSA as
more recent). However, if the originating router first synchronizes the database before originating opaque LSAs, it will
detect the older opaque LSA and can flush it first.

12.1.6 Protocol and Message Formats

If you are developing your own client application and you don’t want to make use of the client library (due to the GNU
license restriction or whatever reason), you can implement your own client-side message handling. The OSPF API uses
two connections between the client and the OSPF API server: One connection is used for a synchronous request /reply
protocol and another connection is used for asynchronous notifications (e.g., LSA update, neighbor status change).

Each message begins with the following header:

The message type field can take one of the following values:

12.1. OSPF APl Documentation 253

FRR Developer’s Manual, Release latest

Common Message

Header

version | msgtype msglen
seqnum
- >
32 bit
Fig. 2: image

Messages to OSPF daemon

Value

MSG_REGISTER_OPAQUETYPE

MSG_UNREGISTER_OPAQUETYPE

MSG_REGISTER_EVENT

MSG_SYNC_LSDB

MSG_ORIGINATE_REQUEST

MSG_DELETE_REQUEST

QNN | W —

Messages from OSPF daemon

Value

MSG_REPLY

10

MSG_READY_NOTIFY

11

MSG_LSA_UPDATE_NOTIFY

12

MSG_LSA_DELETE_NOTIFY

13

MSG_NEW_IF

14

MSG_DEL_IF

15

MSG_ISM_CHANGE

16

MSG_NSM_CHANGE

17

The synchronous requests and replies have the following message formats:

The origin field allows origin-based filtering using the following origin types:

The reply message has one of the following error codes:

Origin Value
NON_SELF_ORIGINATED | 0
SELF_ORIGINATED 1
ANY_ORIGIN 2
Error code Value
API_OK 0
API_NOSUCHINTERFACE -1
API_NOSUCHAREA -2
API_NOSUCHLSA -3
API_ILLEGALSATYPE -4
API_ILLEGALOPAQUETYPE | -5
API_OPAQUETYPEINUSE -6
API_NOMEMORY -7
API_ERROR -99
API_UNDEF -100

254

Chapter 12. OSPFD

FRR Developer’s Manual, Release latest

Register/ Unregister
opaque type

Register event and
synchronize LSDB

LSA originate request

LSA delete request

Reply

LSA opaque unused
type type
- num
typemask origin areas
area_id1
area_id2
ifaddr
area_id

LSA header and payload
(see RFC 2328)

area_lid
LSA opague unused
type type
opaque_id
error unused
code
Fig. 3: image

area_ids in filter

(if any)

12.1. OSPF API Documentation

255

FRR Developer’s Manual, Release latest

The asynchronous notifications have the following message formats:

12.1.7 Original Acknowledgments from Ralph Keller

I would like to thank Masahiko Endo, the author of the opaque LSA extension module, for his great support. His
wonderful ASCII graphs explaining the internal workings of this code, and his invaluable input proved to be crucial in
designing a useful API for accessing the link state database of the OSPF daemon. Once, he even decided to take the
plane from Tokyo to Zurich so that we could actually meet and have face-to-face discussions, which was a lot of fun.
Clearly, without Masahiko no API would ever be completed. I also would like to thank Daniel Bauer who wrote an
opaque LSA implementation too and was willing to test the OSPF API code in one of his projects.

12.2 OSPF Segment Routing

This is an EXPERIMENTAL support of RFC 8665. DON’T use it for production network.

12.2.1 Supported Features

* Automatic computation of Primary and Backup Adjacency SID with Cisco experimental remote IP address
* SRGB & SRLB configuration

* Prefix configuration for Node SID with optional NO-PHP flag (Linux kernel support both mode)

* Node MSD configuration (with Linux Kernel >=4.10 a maximum of 32 labels could be stack)

* Automatic provisioning of MPLS table

» Equal Cost Multi-Path (ECMP)

» Static route configuration with label stack up to 32 labels

» TI-LFA (for P2P interfaces only)

12.2.2 Interoperability

* Tested on various topology including point-to-point and LAN interfaces in a mix of FRRouting instance and
Cisco IOS-XR 6.0.x

¢ Check OSPF LSA conformity with latest wireshark release 2.5.0-rc

12.2.3 Implementation details

Concepts

Segment Routing used 3 different OPAQUE LSA in OSPF to carry the various information:

* Router Information: flood the Segment Routing capabilities of the node. This include the supported algorithms,
the Segment Routing Global Block (SRGB) and the Maximum Stack Depth (MSD).

* Extended Link: flood the Adjaceny and Lan Adjacency Segment Identifier
* Extended Prefix: flood the Prefix Segment Identifier

256 Chapter 12. OSPFD

FRR Developer’s Manual, Release latest

Ready notify

LSA change notify
(update or delete)

MNew Interface

Delete Interface

ISM Change

NSM Change

LSA opaque

unused
type type

ifaddr or area_id

ifaddr
area_id
salt unused
originate
LSA header and payload
(see RFC 2328)
ifaddr
area_id
ifaddr
ifaddr
area_id
ISM
- unused
ifaddr
nbraddr
router_id
NSM
N unused
Fig. 4: image

12.2. OSPF Segment Routing

257

FRR Developer’s Manual, Release latest

The implementation follows previous TE and Router Information codes. It used the OPAQUE LSA functions defined in
ospf_opaque.[c,h] as well as the OSPF API. This latter is mandatory for the implementation as it provides the Callback
to Segment Routing functions (see below) when an Extended Link / Prefix or Router Information LSA s are received.

Overview

Following files where modified or added:
* ospd_ri.[c,h] have been modified to add the new TLVs for Segment Routing.
* ospf_ext.[c,h] implement RFC7684 as base support of Extended Link and Prefix Opaque LSA.

* ospf_sr.[c,h] implement the earth of Segment Routing. It adds a new Segment Routing database to manage Seg-
ment Identifiers per Link and Prefix and Segment Routing enable node, Callback functions to process incoming
LSA and install MPLS FIB entry through Zebra.

The figure below shows the relation between the various files:

* ospf_sr.c centralized all the Segment Routing processing. It receives Opaque LSA Router Information (4.0.0.0)
from ospf_ri.c and Extended Prefix (7.0.0.X) Link (8.0.0.X) from ospf_ext.c. Once received, it parse TLVs and
SubTLVs and store information in SRDB (which is defined in ospf_sr.h). For each received LSA, NHLFE is
computed and send to Zebra to add/remove new MPLS labels entries and FEC. New CLI configurations are also
centralized in ospf_sr.c. This CLI will trigger the flooding of new LSA Router Information (4.0.0.0), Extended
Prefix (7.0.0.X) and Link (8.0.0.X) by ospf_ri.c, respectively ospf_ext.c.

* ospf_ri.c send back to ospf_sr.c received Router Information LSA and update Self Router Information LSA with
parameters provided by ospf_sr.c i.e. SRGB and MSD. It use ospf_opaque.c functions to send/received these
Opaque LSAs.

 ospf_ext.c send back to ospf_sr.c received Extended Prefix and Link Opaque LSA and send self Extended Prefix
and Link Opaque LSA through ospf_opaque.c functions.

e ettt + e et +
I I I I
| ospf_sr.c +----- + SRDB |

e ittt + +--+ | |

[oA At | e +

I I I I

I I (. I

| I R B e *

I I I I I
i + | [+--——- V== +
I (. [I I
ospf_ri.c +-—+	R + ospf_ext.c		
LSA 4.0.0.0	[LSA 7.0.0.X	
			LSA 8.0.0.X
ittt + I | |

| I Mininininle Moo +

I I I

I I I

| Fom e Voo + |

I I I I

| | ZEBRA: Labels + FEC | |

I I I I

| o + |

I I

(continues on next page)

258 Chapter 12. OSPFD

FRR Developer’s Manual, Release latest

(continued from previous page)

+

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
+

| |

Fommmm - > ospf_opaque.c <--------- +
| |
Fomm - +

Figure 1: Overview of Segment Routing interaction

Module interactions

To process incoming LSA, the code is based on the capability to call hook() functions when LSA are inserted or delete
to / from the LSDB and the possibility to register particular treatment for Opaque LSA. The first point is provided by
the OSPF API feature and the second by the Opaque implementation itself. Indeed, it is possible to register callback
function for a given Opaque LSA ID (see ospf_register_opaque_functab() function defined in ospf_opaque.c). Each
time a new LSA is added to the LSDB, the new_Isa_hook() function previously register for this LSA type is called. For
Opaque LSA it is the ospf_opaque_lsa_install_hook(). For deletion, it is ospf_opaque_lsa_delete_hook().

Note that incoming LSA which is already present in the LSDB will be inserted after the old instance of this LSA remove
from the LSDB. Thus, after the first time, each incoming LSA will trigger a delete following by an install. This is not
very helpful to handle real LSA deletion. In fact, LSA deletion is done by Flushing LSA i.e. flood LSA after setting
its age to MAX_AGE. Then, a garbage function has the role to remove all LSA with age == MAX_AGE in the LSDB.
So, to handle LSA Flush, the best is to look to the LSA age to determine if it is an installation or a future deletion i.e.
the flushed LSA is first store in the LSDB with MAX_AGE waiting for the garbage collector function.

Router Information LSAs

To activate Segment Routing, new CLI command segment-routing on has been introduced. When this command is acti-
vated, function ospf_router_info_update_sr() is called to indicate to Router Information process that Segment Routing
TLVs must be flood. Same function is called to modify the Segment Routing Global Block (SRGB) and Maximum
Stack Depth (MSD) TLV. Only Shortest Path First (SPF) Algorithm is supported, so no possibility to modify this TLV
is offer by the code.

When Opaque LSA Type 4 i.e. Router Information are stored in LSDB, function ospf_opaque_lsa_install_hook()
will call the previously registered function ospf_router_info_lsa_update(). In turn, the function will simply trigger
ospf_sr_ri_lsa_update() or ospf_sr_ri_lsa_delete in function of the LSA age. Before, it verifies that the LSA Opaque

Type is 4 (Router Information). Self Opaque LSA are not send back to the Segment Routing functions as information
are already stored.

Extended Link Prefix LSAs

Like for Router Information, Segment Routing is activate at the Extended Link/Prefix level with new segment-routing
on command. This triggers automatically the flooding of Extended Link LSA for all ospf interfaces where adjacency
is full. For Extended Prefix LSA, the new CLI command segment-routing prefix ... will trigger the flooding of Prefix
SID TLV/SubTLVs.

When Opaque LSA Type 7 i.e. Extended Prefix and Type 8 i.e. Extended Link are store in the
LSDB, ospf_ext_pref_update_lsa() respectively ospf_ext_link_update_lsa() are called like for Router Informa-
tion LSA. In turn, they respectively trigger ospf sr_ext_prefix_lsa_update() | ospf_sr_ext_link_lsa_update() or
ospf_sr_ext_prefix_lsa_delete() | ospf_sr_ext_link_lsa_delete() if the LSA age is equal to MAX_AGE.

12.2. OSPF Segment Routing 259

FRR Developer’s Manual, Release latest

Zebra

When a new MPLS entry or new Forwarding Equivalent Class (FEC) must be added or deleted in the data plane,
add_sid_nhlfe() respectively del_sid_nhlfe() are called. Once check the validity of labels, they are send to ZEBRA
layer through ZEBRA_MPLS_LABELS_ADD command, respectively ZEBRA_MPLS_LABELS DELETE command
for deletion. This is completed by a new labelled route through ZEBRA_ROUTE_ADD command, respectively ZE-
BRA_ROUTE_DELETE command.

TI-LFA
Experimental support for Topology Independent LFA (Loop-Free Alternate), see for example ‘draft-bashandy-rtgwg-
segment-routing-ti-Ifa-05’. The related files are ospf_ti_Ilfa.c/h.

The current implementation is rather naive and does not support the advanced optimizations suggested in e.g. RFC7490
or RFC8102. It focuses on providing the essential infrastructure which can also later be used to enhance the algorithmic
aspects.

Supported features:
* Link and node protection
* Intra-area support
* Proper use of Prefix- and Adjacency-SIDs in label stacks
* Asymmetric weights (using reverse SPF)
* Non-adjacent P/Q spaces
¢ Protection of Prefix-SIDs

If configured for every SPF run the routing table is enriched with additional backup paths for every prefix. The corre-
sponding Prefix-SIDs are updated with backup paths too within the OSPF SR update task.

Informal High-Level Algorithm Description:

p_spaces = empty_list()
for every protected_resource (link or node):
p_space = generate_p_space(protected_resource)

p_space.qg_spaces = empty_list()

for every destination that is affected by the protected_resource:
g_space = generate_g_space(destination)

The label stack is stored in g_space
generate_label_stack(p_space, q_space)

The p_space collects all its qg_spaces
p_spaces.q_spaces.add(g_space)

p_spaces.add(p_space)

adjust_routing_table(p_spaces)

Possible Performance Improvements:

* Improve overall datastructures, get away from linked lists for vertices

260 Chapter 12. OSPFD

FRR Developer’s Manual, Release latest

* Don’t calculate a Q space for every destination, but for a minimum set of backup paths that cover all destinations
in the post-convergence SPF. The thinking here is that once a backup path is known that it is also a backup path
for all nodes on the path themselves. This can be done by using the leafs of a trimmed minimum spanning tree
generated out of the post- convergence SPF tree for that particular P space.

* For an alternative (maybe better) optimization look at https://tools.ietf.org/html/rfc7490#section-5.2.1.3 which
describes using the Q space of the node which is affected by e.g. a link failure. Note that this optimization is
topology dependent.

It is highly recommended to read e.g. Segment Routing I/II by Filsfils to understand the basics of Ti-LFA.
12.2.4 Configuration
Linux Kernel

In order to use OSPF Segment Routing, you must setup MPLS data plane. Up to know, only Linux Kernel version >=
4.5 is supported.

First, the MPLS modules aren’t loaded by default, so you’ll need to load them yourself:

modprobe mpls_router
modprobe mpls_gso
modprobe mpls_iptunnel

Then, you must activate MPLS on the interface you would used:

sysctl -w net.mpls.conf.enp0s9.input=1
sysctl -w net.mpls.conf.lo.input=1
sysctl -w net.mpls.platform_labels=1048575

The last line fix the maximum MPLS label value.

Once OSPFd start with Segment Routing, you could check that MPLS routes are enable with:

ip -M route
ip route

The first command show the MPLS LFIB table while the second show the FIB table which contains route with MPLS
label encapsulation.

If you disable Penultimate Hop Popping with the no-php-flag (see below), you MUST check that RP filter is not enable
for the interface you intend to use, especially the /o one. For that purpose, disable RP filtering with:

systcl -w net.ipv4.conf.all.rp_filter=0
sysctl -w net.ipv4.conf.lo.rp_filter=0

12.2. OSPF Segment Routing 261

https://tools.ietf.org/html/rfc7490#section-5.2.1.3

FRR Developer’s Manual, Release latest

OSPFd

Here it is a simple example of configuration to enable Segment Routing. Note that opaque capability and router
information must be set to activate Opaque LSA prior to Segment Routing.

router ospf
ospf router-id 192.168.1.11
capability opaque
segment-routing on
segment-routing global-block 10000 19999 local-block 5000 5999
segment-routing node-msd 8
segment-routing prefix 192.168.1.11/32 index 1100

The first segment-routing statement enables it. The second and third one set the SRGB and SRLB respectively, fourth
line the MSD and finally, set the Prefix SID index for a given prefix.

Note that only prefix of Loopback interface could be configured with a Prefix SID. It is possible to add no-php-flag at
the end of the prefix command to disable Penultimate Hop Popping. This advertises to peers that they MUST NOT pop
the MPLS label prior to sending the packet.

12.2.5 Known limitations

* Runs only within default VRF
* Only single Area is supported. ABR is not yet supported

Only SPF algorithm is supported

Extended Prefix Range is not supported

With NO Penultimate Hop Popping, it is not possible to express a Segment Path with an Adjacency SID due to
the impossibility for the Linux Kernel to perform double POP instruction.

12.2.6 Credits

* Author: Anselme Sawadogo <anselmesawadogo @ gmail.com>
* Author: Olivier Dugeon <olivier.dugeon @orange.com>
* Copyright (C) 2016 - 2018 Orange Labs http://www.orange.com

This work has been performed in the framework of the H2020-ICT-2014 project SGEx (Grant Agreement no. 671636),
which is partially funded by the European Commission.

262 Chapter 12. OSPFD

mailto:anselmesawadogo@gmail.com
mailto:olivier.dugeon@orange.com
http://www.orange.com

CHAPTER
THIRTEEN

ZEBRA

13.1 Overview of the Zebra Protocol

The Zebra protocol (or ZAPT) is used by protocol daemons to communicate with the zebra daemon.

Each protocol daemon may request and send information to and from the zebra daemon such as interface states, routing
state, nexthop-validation, and so on. Protocol daemons may also install routes with zebra. The zebra daemon manages
which routes are installed into the forwarding table with the kernel. Some daemons use more than one ZAPI connection.
This is supported: each ZAPI session is identified by a tuple of: {protocol, instance, session_id}. LDPD is
an example: it uses a second, synchronous ZAPI session to manage label blocks. The default value for session_id is
zero; daemons who use multiple ZAPI sessions must assign unique values to the sessions’ ids.

The Zebra protocol is a streaming protocol, with a common header. Version 0 lacks a version field and is implicitly
versioned. Version 1 and all subsequent versions have a version field. Version O can be distinguished from all other
versions by examining the 3rd byte of the header, which contains a marker value of 255 (in Quagga) or 254 (in FRR)
for all versions except version 0. The marker byte corresponds to the command field in version 0, and the marker value
is a reserved command in version 0.

13.1.1 Version History

e Version 0

Used by all versions of GNU Zebra and all version of Quagga up to and including Quagga 0.98. This version
has no version field, and so is implicitly versioned as version O.

¢ Version 1

Added marker and version fields, increased command field to 16 bits. Used by Quagga versions 0.99.3 through
0.99.20.

* Version 2

Used by Quagga versions 0.99.21 through 0.99.23.
* Version 3

Added vrf_id field. Used by Quagga versions 0.99.23 until FRR fork.
* Version 4

Change marker value to 254 to prevent people mixing and matching Quagga and FRR daemon binaries. Used
by FRR versions 2.0 through 3.0.3.

¢ Version 5

Increased VRF identifier field from 16 to 32 bits. Used by FRR versions 4.0 through 5.0.1.

263

FRR Developer’s Manual, Release latest

* Version 6
Removed the following commands:

— ZEBRA_IPV4_ROUTE_ADD
ZEBRA_IPV4_ROUTE_DELETE
ZEBRA_IPV6_ROUTE_ADD

— ZEBRA_IPV6_ROUTE_DELETE
Used since FRR version 6.0.

13.2 Zebra Protocol Definition

13.2.1 Zebra Protocol Header Field Definitions

Length Total packet length including this header.

Marker Static marker. The marker value, when it exists, is 255 in all versions of Quagga. It is 254 in all versions
of FRR. This is to allow version 0 headers (which do not include version explicitly) to be distinguished from
versioned headers.

Version Zebra protocol version number. Clients should not continue processing messages past the version field for
versions they do not recognise.

Command The Zebra protocol command.

Current Version

Version 5, 6

0 1 2 3
®©12345678901234567890123456789601
i et T s e I e e B B s s o o T AR ST RS
| Length | Marker | Version |
i et T s s s i o s S St S e e S s s Tk
| VRF ID |
1 T AR T S S
| Command |
i T S e B i T SRR

Past Versions

Version 0

0 1 2 3
®©12345678901234567890123456789601
e e T S s s S e L e S T e el
| Length | Command |
+—t—+—F-F—F-+—F—F—F-+—F—F—F—F—F—F—F—F—F—F—F+-+—+-+

264 Chapter 13. Zebra

FRR Developer’s Manual, Release latest

Version 1, 2

0 1 2 3
012345678901234567890123456789601
e e A e A S st T S

| Length | Marker | Version |
+-t—t—t-F—F—t-F—t—F -+ttt —F -ttt -+ttt —F—F -ttt -+ —F+—+—+
| Command |

s et s st St e S

Version 3, 4

0 1 2 3
012345678901234567890123456789601
e T s R st L e T L

| Length | Marker | Version |
+-t—+—F-F—F—F—F—F—F -ttt —F—F—F—F—F -ttt —F—F -+t —F—F -+ —F+—+—+
| VRF ID | Command |

s T e e s S s T L

13.2.2 Zebra Protocol Commands

Command Value
ZEBRA_INTERFACE_ADD 0
ZEBRA_INTERFACE_DELETE 1
ZEBRA_INTERFACE_ADDRESS_ADD 2
ZEBRA_INTERFACE_ADDRESS_DELETE 3
ZEBRA_INTERFACE_UP 4
ZEBRA_INTERFACE_DOWN 5
ZEBRA_INTERFACE_SET_MASTER 6
ZEBRA_INTERFACE_SET _PROTODOWN 7
ZEBRA_ROUTE_ADD 8
ZEBRA_ROUTE_DELETE 9
ZEBRA_ROUTE_NOTIFY_OWNER 10
ZEBRA_REDISTRIBUTE_ADD 11
ZEBRA_REDISTRIBUTE_DELETE 12
ZEBRA_REDISTRIBUTE_DEFAULT_ADD 13
ZEBRA_REDISTRIBUTE_DEFAULT_DELETE 14
ZEBRA_ROUTER_ID_ADD 15
ZEBRA_ROUTER_ID_DELETE 16
ZEBRA_ROUTER_ID_UPDATE 17
ZEBRA_HELLO 18
ZEBRA_CAPABILITIES 19
ZEBRA_NEXTHOP_REGISTER 20
ZEBRA_NEXTHOP_UNREGISTER 21
ZEBRA_NEXTHOP_UPDATE 22
ZEBRA_INTERFACE_NBR_ADDRESS_ADD 23
ZEBRA_INTERFACE_NBR_ADDRESS_DELETE 24
ZEBRA_INTERFACE_BFD_DEST_UPDATE 25

continues on next page

13.2. Zebra Protocol Definition 265

FRR Developer’s Manual, Release latest

Table 1 - continued from previous page

Command Value
ZEBRA_IMPORT_ROUTE_REGISTER 26
ZEBRA_IMPORT_ROUTE_UNREGISTER 27
ZEBRA_IMPORT_CHECK_UPDATE 28
ZEBRA_BFD_DEST_REGISTER 29
ZEBRA_BFD_DEST_DEREGISTER 30
ZEBRA_BFD_DEST_UPDATE 31
ZEBRA_BFD_DEST_REPLAY 32
ZEBRA_REDISTRIBUTE_ROUTE_ADD 33
ZEBRA_REDISTRIBUTE_ROUTE_DEL 34
ZEBRA_VRF_UNREGISTER 35
ZEBRA_VRF_ADD 36
ZEBRA_VRF_DELETE 37
ZEBRA_VRF_LABEL 38
ZEBRA_INTERFACE_VRF_UPDATE 39
ZEBRA_BFD_CLIENT_REGISTER 40
ZEBRA_BFD_CLIENT_DEREGISTER 41
ZEBRA_INTERFACE_ENABLE_RADV 42
ZEBRA_INTERFACE_DISABLE_RADV 43
ZEBRA_NEXTHOP_LOOKUP_MRIB 44
ZEBRA_INTERFACE_LINK_PARAMS 45
ZEBRA_MPLS_LABELS_ADD 46
ZEBRA_MPLS_LABELS_DELETE 47
ZEBRA_MPLS_LABELS_REPLACE 48
ZEBRA_IPMR_ROUTE_STATS 49
ZEBRA_LABEL_MANAGER_CONNECT 50
ZEBRA_LABEL_MANAGER_CONNECT_ASYNC | 51
ZEBRA_GET_LABEL_CHUNK 52
ZEBRA_RELEASE_LLABEL_CHUNK 53
ZEBRA_FEC_REGISTER 54
ZEBRA_FEC_UNREGISTER 55
ZEBRA_FEC_UPDATE 56
ZEBRA_ADVERTISE_DEFAULT_GW 57
ZEBRA_ADVERTISE_SVI_MACIP 58
ZEBRA_ADVERTISE_SUBNET 59
ZEBRA_ADVERTISE_ALL_VNI 60
ZEBRA_LOCAL_ES_ADD 61
ZEBRA_LOCAL_ES_DEL 62
ZEBRA_VNI_ADD 63
ZEBRA_VNI_DEL 64
ZEBRA_L3VNI_ADD 65
ZEBRA_L3VNI_DEL 66
ZEBRA_REMOTE_VTEP_ADD 67
ZEBRA_REMOTE_VTEP_DEL 68
ZEBRA_MACIP_ADD 69
ZEBRA_MACIP_DEL 70
ZEBRA_IP_PREFIX_ROUTE_ADD 71
ZEBRA_IP_PREFIX_ROUTE_DEL 72
ZEBRA_REMOTE_MACIP_ADD 73
ZEBRA_REMOTE_MACIP_DEL 74

continues on next page

266

Chapter 13. Zebra

FRR Developer’s Manual, Release latest

Table 1 - continued from previous page

Command Value
ZEBRA_DUPLICATE_ADDR_DETECTION 75
ZEBRA_PW_ADD 76
ZEBRA_PW_DELETE 77
ZEBRA_PW_SET 78
ZEBRA_PW_UNSET 79
ZEBRA_PW_STATUS_UPDATE 80
ZEBRA_RULE_ADD 81
ZEBRA_RULE_DELETE 82
ZEBRA_RULE_NOTIFY_OWNER 83
ZEBRA_TABLE_MANAGER_CONNECT 84
ZEBRA_GET_TABLE_CHUNK 85
ZEBRA_RELEASE_TABLE_CHUNK 86
ZEBRA_IPSET_CREATE 87
ZEBRA_IPSET_DESTROY 88
ZEBRA_IPSET_ENTRY_ADD 89
ZEBRA_IPSET_ENTRY_DELETE 90
ZEBRA_IPSET _NOTIFY_OWNER 91
ZEBRA_IPSET_ENTRY_NOTIFY_OWNER 92
ZEBRA_IPTABLE_ADD 93
ZEBRA_IPTABLE_DELETE 94
ZEBRA_IPTABLE_NOTIFY_OWNER 95
ZEBRA_VXLAN_FLOOD_CONTROL 96
ZEBRA_VXLAN_SG_ADD 97
ZEBRA_VXLAN_SG_DEL 98
ZEBRA_VXLAN_SG_REPLAY 99
ZEBRA_MLAG_PROCESS_UP 100
ZEBRA_MLAG_PROCESS_DOWN 101
ZEBRA_MLAG_CLIENT_REGISTER 102
ZEBRA_MLAG_CLIENT_UNREGISTER 103
ZEBRA_MLAG_FORWARD_MSG 104
ZEBRA_ERROR 105
ZEBRA_CLIENT_CAPABILITIES 106

ZEBRA_OPAQUE_MESSAGE

107

ZEBRA_OPAQUE_REGISTER

108

ZEBRA_OPAQUE_UNREGISTER

109

ZEBRA_NEIGH_DISCOVER

110

13.3 Dataplane batching

Dataplane batching is an optimization feature that reduces the processing time involved in the user space to kernel space

transition for every message we want to send.

13.3. Dataplane batching

267

FRR Developer’s Manual, Release latest

13.3.1 Design

With our dataplane abstraction, we create a queue of dataplane context objects for the messages we want to send to
the kernel. In a separate pthread, we loop over this queue and send the context objects to the appropriate dataplane. A
batching enhancement tightly integrates with the dataplane context objects so they are able to be batch sent to dataplanes
that support it.

There is one main change in the dataplane code. It does not call kernel-dependent functions one-by-one, but instead it
hands a list of work down to the kernel level for processing.

Netlink

At the moment, this is the only dataplane that allows for batch sending messages to it.

When messages must be sent to the kernel, they are consecutively added to the batch represented by the struct nl_batch.
Context objects are firstly encoded to their binary representation. All the encoding functions use the same interface:
take a context object, a buffer and a size of the buffer as an argument. It is important that they should handle a situation
in which a message wouldn’t fit in the buffer and return a proper error. To achieve a zero-copy (in the user space
only) messages are encoded to the same buffer which will be passed to the kernel. Hence, we can theoretically hit the
boundary of the buffer.

Messages stored in the batch are sent if one of the conditions occurs:

* When an encoding function returns the buffer overflow error. The context object that caused this error is re-added
to the new, empty batch.

¢ When the size of the batch hits certain limit.

¢ When the namespace of a currently being processed context object is different from all the previous ones. They
have to be sent through distinct sockets, so the messages cannot share the same buffer.

 After the last message from the list is processed.

As mentioned earlier, there is a special threshold which is smaller than the size of the underlying buffer. It prevents the
overflow error and thus eliminates the case, in which a message is encoded twice.

The buffer used in the batching is global, since allocating that big amount of memory every time wouldn’t be most
effective. However, its size can be changed dynamically, using hidden vtysh command: zebra kernel netlink
batch-tx-buf (1-1048576) (1-1048576). This feature is only used in tests and shouldn’t be utilized in any other
place.

For every failed message in the batch, the kernel responds with an error message. Error messages are kept in the same
order as they were sent, so parsing the response is straightforward. We use the two pointer technique to match requests
with responses and then set appropriate status of dataplane context objects. There is also a global receive buffer and it
is assumed that whatever the kernel sends it will fit in this buffer. The payload of netlink error messages consists of a
error code and the original netlink message of the request, so the batch response won’t be bigger than the batch request
increased by some space for the headers.

268 Chapter 13. Zebra

CHAPTER
FOURTEEN

VTYSH

See also:

Command Line Interface

14.1 Architecture

VTYSH is a shell for FRR daemons. It amalgamates all the CLI commands defined in each of the daemons and
presents them to the user in a single shell, which saves the user from having to telnet to each of the daemons and use
their individual shells. The amalgamation is achieved by extracting commands from daemons and injecting them into
VTYSH at build time.

At runtime, VTYSH maintains an instance of a CLI mode tree just like each daemon. However, the mode tree in
VTYSH contains (almost) all commands from every daemon in the same tree, whereas individual daemons have trees
that only contain commands relevant to themselves. VI'YSH also uses the library CLI facilities to maintain the user’s
current position in the tree (the current node). Note that this position must be synchronized with all daemons; if a
daemon receives a command that causes it to change its current node, VTYSH must also change its node. Since the
extraction script does not understand the handler code of commands, but only their definitions, this and other behaviors
must be manually programmed into VTYSH for every case where the internal state of VT YSH must change in response
to a command. Details on how this is done are discussed in the Special DEFUNs section.

VTYSH also handles writing and applying the integrated configuration file, /etc/frr/frr.conf. Since it has knowl-
edge of the entire command space of FRR, it can intelligently distribute configuration commands only to the daemons
that understand them. Similarly, when writing the configuration file it takes care of combining multiple instances of
configuration blocks and simplifying the output. This is discussed in Configuration Management.

14.1.1 Command Extraction

When VTYSH is built, a Perl script named extract.pl searches the FRR codebase looking for DEFUN’s. It extracts
these DEFUN’s, transforms them into DEFSH’s and appends them to vtysh_cmd.c. Each DEFSH contains the name
of the command plus _vtysh, as well as a flag that indicates which daemons the command was found in. When the
command is executed in VIT'YSH, this flag is inspected to determine which daemons to send the command to. This
way, commands are only sent to the daemons that know about them, avoiding spurious errors from daemons that don’t
have the command defined.

The extraction script contains lots of hardcoded knowledge about what sources to look at and what flags to use for
certain commands.

269

FRR Developer’s Manual, Release latest

14.1.2 Special DEFUNs

In addition to the vanilla DEFUN macro for defining CLI commands, there are several VT YSH-specific DEFUN variants
that each serve different purposes.

DEFSH Used almost exclusively by generated VIYSH code. This macro defines a cmd_element with no handler
function; the command, when executed, is simply forwarded to the daemons indicated in the daemon flag.

DEFUN_NOSH Used by daemons. Has the same expansion as a DEFUN, but extract.pl will skip these definitions
when extracting commands. This is typically used when VTYSH must take some special action upon receiving
the command, and the programmer therefore needs to write VITYSH’s copy of the command manually instead
of using the generated version.

DEFUNSH The same as DEFUN, but with an argument that allows specifying the ->daemon field of the generated
cmd_element. This is used by VTYSH to determine which daemons to send the command to.

DEFUNSH_ATTR A version of DEFUNSH that allows setting the ->attr field of the generated cmd_element. Not used
in practice.

14.1.3 Configuration Management

When integrated configuration is used, VTYSH manages writing, reading and applying the FRR configuration file.
VTYSH can be made to read and apply an integrated configuration to all running daemons by launching it with -f
<file>. It sends the appropriate configuration lines to the relevant daemons in the same way that commands entered
by the user on VTYSH’s shell prompt are processed.

Configuration writing is more complicated. VTYSH makes a best-effort attempt to combine and simplify the configu-
ration as much as possible. A working example is best to explain this behavior.

Example

Suppose we have just staticd and zebra running on the system, and use VI'YSH to apply the following configuration
snippet:

!

vrf blue

ip protocol static route-map ExampleRoutemap
ip route 192.168.0.0/24 192.168.0.1

exit-vrf
I

Note that staticd defines static route commands and zebra defines ip protocol commands. Therefore if we ask only
zebra for its configuration, we get the following:

(config)# do sh running-config zebra
Building configuration...

!
vrf blue
ip protocol static route-map ExampleRoutemap

exit-vrf
!

270 Chapter 14. VTYSH

FRR Developer’s Manual, Release latest

Note that the static route doesn’t show up there. Similarly, if we ask staticd for its configuration, we get:

(config)# do sh running-config staticd

!
vrf blue
ip route 192.168.0.0/24 192.168.0.1

exit-vrf
|

But when we display the configuration with VT YSH, we see:

ubuntu-bionic(config)# do sh running-config

|
vrf blue

ip protocol static route-map ExampleRoutemap
ip route 192.168.0.0/24 192.168.0.1

exit-vrf
!

This is because VTYSH asks each daemon for its currently running configuration, and combines equivalent blocks
together. In the above example, it combined the vrf blue blocks from both zebra and staticd together into one. This
is done in vtysh_config.c.

14.2 Protocol

VTYSH communicates with FRR daemons by way of domain socket. Each daemon creates its own socket, typically
in /var/run/frr/<daemon>.vty. The protocol is very simple. In the VTYSH to daemon direction, messages are
simply NUL-terminated strings, whose content are CLI commands. Here is a typical message from VTYSH to a
daemon:

Request

00000000: 646f 2077 7269 7465 2074 6572 6d69 6e61 do write termina
00000010: 6cOa 00 1..

The response format has some more data in it. First is a NUL-terminated string containing the plaintext response, which
is just the output of the command that was sent in the request. This is displayed to the user. The plaintext response is
followed by 3 null marker bytes, followed by a 1-byte status code that indicates whether the command was successful
or not.

Response

0 1 2 3

01234567890 123456789012345678901
s e T s s S s T S e B s s it Tt TR S
| Plaintext Response |

(continues on next page)

14.2. Protocol 271

FRR Developer’s Manual, Release latest

(continued from previous page)

s s st e S e s S e s e e st
| Marker (0x00) | Status Code |
T T T R B S B A A TS

The first 0x00 byte in the marker also serves to terminate the plaintext response.

272 Chapter 14. VTYSH

CHAPTER
FIFTEEN

PATHD

15.1 Internals

15.1.1 PATHD Internals

Architecture

Overview

The pathd deamon manages the segment routing policies, it owns the data structures representing them and can load
modules that manipulate them like the PCEP module. Its responsibility is to select a candidate path for each configured
policy and to install it into Zebra.

Zebra

Zebra manages policies that are active or pending to be activated due to the next hop not being available yet. In zebra,
policy data structures and APIs are defined in zebra_srte.[hc].

The responsibilities of Zebra are:
« Store the policies’ segment list.
* Install the policies when their next-hop is available.
» Notify other daemons of the status of the policies.

Adding and removing policies is done wusing the commands ZEBRA_SR_POLICY_SET and ZE-
BRA_SR_POLICY_DELETE as parameter of the function zebra_send_sr_policy all defined in zclient.[hc].

If the first segment of the policy is an unknown label, it is kept until notified by the mpls hooks ze-
bra_mpls_label_created, and then it is installed.

To get notified when a policy status changes, a client can implement the sr_policy_notify_status callback defined in
zclient.[he].

For encoding/decoding the various data structures used to comunicate with zebra, the following functions are available
from zclient.[hc]: zapi_sr_policy_encode, zapi_sr_policy_decode and zapi_sr_policy_notify_status_decode.

273

FRR Developer’s Manual, Release latest

Pathd

The pathd daemon manages all the possible candidate paths for the segment routing policies and selects the best one
following the segment routing policy draft. It also supports loadable modules for handling dynamic candidate paths
and the creation of new policies and candidate paths at runtime.

The responsibilities of the pathd base daemon, not including any optional modules, are:
* Store the policies and all the possible candidate paths for them.
* Select the best candidate path for each policy and send it to Zebra.
* Provide VTYSH configuration to set up policies and candidate paths.
* Provide a Northbound API to manipulate configured policies and candidate paths.
* Handle loadable modules for extending the functionality.

* Provide an API to the loadable module to manipulate policies and candidate paths.

Threading Model

The daemon runs completely inside the main thread using FRR event model, there is no threading involved.

Source Code

Internal Data Structures

The main data structures for policies and candidate paths are defined in pathd.h and implemented in pathd.c.

When modifying these structures, either directly or through the functions exported by pathd.h, nothing should be
deleted/freed right away. The deletion or modification flags must be set and when all the changes are done, the function
srte_apply_changes must be called. When called, a new candidate path may be elected and sent to Zebra, and all the
structures flagged as deleted will be freed. In addition, a hook will be called so dynamic modules can perform any
required action when the elected candidate path changes.

Northbound API

The northbound API is defined in path_nb.[ch] and implemented in path_nb_config.c for configuration data and
path_nb_state.c for operational data.

Command Line Client

The command-line client (VTYSH) is implemented in path_cli.c.

274 Chapter 15. PATHD

https://tools.ietf.org/html/draft-ietf-spring-segment-routing-policy-06#section-2.9

FRR Developer’s Manual, Release latest

Interface with Zebra

All the functions interfacing with Zebra are defined and implemented in path_zebra.[hc].

Loadable Module API

For the time being, the API the loadable module uses is defined by pathd.h, but in the future, it should be moved to a
dedicated include file.

15.1.2 PCEP Module Internals

Introduction
The PCEP module for the pathd daemon implements the PCEP protocol described in RFC 5440 to update the policies
and candidate paths.
The protocol encoding/decoding and the basic session management is handled by the pceplib external library 1.2.
Together with pceplib, this module supports at least partially:

e RFC 5440

Most of the protocol defined in the RFC is implemented. All the messages can be parsed, but this
was only tested in the context of segment routing. Only a very small subset of metric types can be
configured, and there is a known issue with some Cisco routers not following the IANA numbers for
metrics.

* RFC 8231

Support delegation of candidate path after performing the initial computation request. If the PCE
does not respond or cannot compute a path, an empty candidate path is delegated to the PCE. Only
tested in the context of segment routing.

* RFC 8408
Only used to comunicate the support for segment routing to the PCE.
* RFC 8664

All the NAI types are implemented, but only the MPLS NAI are supported. If the PCE provide
segments that are not MPLS labels, the PCC will return an error.

Note that pceplib supports more RFCs and drafts, see pceplib README for more details.

Architecture

Overview

The module is separated into multiple layers:
* pathd interface
* command-line console
* controller
e PCC

* pceplib interface

15.1. Internals 275

https://tools.ietf.org/html/rfc5440.html
https://github.com/volta-networks/pceplib/tree/devel-1.2
https://tools.ietf.org/html/rfc5440.html
https://tools.ietf.org/html/rfc8231.html
https://tools.ietf.org/html/rfc8408.html
https://tools.ietf.org/html/rfc8664.html
https://github.com/volta-networks/pceplib/blob/master/README.md

FRR Developer’s Manual, Release latest

The pathd interface handles all the interactions with the daemon API.

The command-line console handles all the VTYSH configuration commands.

The controller manages the multiple PCC connections and the interaction between them and the daemon interface.
The PCC handles a single connection to a PCE through a pceplib session.

The pceplib interface abstracts the API of the pceplib.

Threading Model

The module requires multiple threads to cooperate:
* The main thread used by the pathd daemon.
* The controller pthread used to isolate the PCC from the main thread.
* The possible threads started in the pceplib library.

To ensure thread safety, all the controller and PCC state data structures can only be read and modified in the controller
thread, and all the global data structures can only be read and modified in the main thread. Most of the interactions
between these threads are done through FRR timers and events.

The controller is the bridge between the two threads, all the functions that MUST be called from the main thread start
with the prefix pcep_ctrl_ and all the functions that MUST be called from the controller thread start with the prefix
pcep_thread_. When an asynchronous action must be taken in a different thread, an FRR event is sent to the thread. If
some synchronous operation is needed, the calling thread will block and run a callback in the other thread, there the
result is COPIED and returned to the calling thread.

No function other than the controller functions defined for it should be called from the main thread. The only exception
being some utility functions from path_pcep_lib.[hc].

All the calls to pathd API functions MUST be performed in the main thread, for that, the controller sends FRR events
handled in function path_pcep.c:pcep_main_event_handler.

For the same reason, the console client only runs in the main thread. It can freely use the global variable, but MUST
use controller’s pcep_ctrl_ functions to interact with the PCCs.

Source Code

Generic Data Structures

The data structures are defined in multiple places, and where they are defined dictates where they can be used.
The data structures defined in path_pcep.h can be used anywhere in the module.

Internally, throughout the module, the struct path data structure is used to describe PCEP messages. It is a simplified
flattened structure that can represent multiple complex PCEP message types. The conversion from this structure to the
PCEP data structures used by pceplib is done in the pceplib interface layer.

The data structures defined in path_pcep_controller.h should only be used in path_pcep_controller.c. Even if a structure
pointer is passed as a parameter to functions defined in path_pcep_pcc.h, these should consider it as an opaque data
structure only used to call back controller functions.

The same applies to the structures defined in path_pcep_pcc.h, even if the controller owns a reference to this data
structure, it should never read or modify it directly, it should be considered an opaque structure.

The global data structure can be accessed from the pathd interface layer path_pcep.c and the command line client code
path_pcep_cli.c.

276 Chapter 15. PATHD

FRR Developer’s Manual, Release latest

Interface With Pathd

All the functions calling or called by the pathd daemon are implemented in path_pcep.c. These functions MUST run
in the main FRR thread, and all the interactions with the controller and the PCCs MUST pass through the controller’s
pcep_ctrl_ prefixed functions.

To handle asynchronous events from the PCCs, a callback is passed to pcep_ctrl_initialize that is called in the FRR
main thread context.

Command Line Client

All the command line configuration commands (VTYSH) are implemented in path_pcep_cli.c. All the functions there
run in the main FRR thread and can freely access the global variables. All the interaction with the controller’s and the
PCCs MUST pass through the controller pcep_ctrl_ prefixed functions.

Debugging Helpers

All the functions formating data structures for debugging and logging purposes are implemented in
path_pcep_debug.[hc].

Interface with pceplib

All the functions calling the pceplib external library are defined in path_pcep_lib.[hc]. Some functions are called
from the main FRR thread, like pcep_lib_initialize, pcep_lib_finalize; some can be called from either thread, like
pcep_lib_free_counters; some function must be called from the controller thread, like pcep_lib_connect. This will
probably be formalized later on with function prefix like done in the controller.

Controller

The controller is defined and implemented in path_pcep_controller.[hc]. Part of the controller code runs in FRR
main thread and part runs in its own FRR pthread started to isolate the main thread from the PCCs’ event loop. To
communicate between the threads it uses FRR events, timers and thread_execute calls.

PCC

Each PCC instance owns its state and runs in the controller thread. They are defined and implemented in
path_pcep_pcc.[hc]. All the interactions with the daemon must pass through some controller’s pcep_thread_ prefixed
function.

15.1. Internals 277

FRR Developer’s Manual, Release latest

278 Chapter 15. PATHD

CHAPTER
SIXTEEN

PCEPLIB

16.1 Overview

The PCEPIib is a PCEP implementation library that can be used by either a PCE or PCC.

Currently, only the FRR pathd has been implemented as a PCC with the PCEPlib. The PCEPIib is able to simultaneously
connect to multiple PCEP peers and can maintain persistent PCEP connections.

16.2 PCEPIlib compliance

The PCEPIib implements version 1 of the PCEP protocol, according to RFC 5440.
Additionally, the PCEPIlib implements the following PCEP extensions:
e RFC 8281 PCE initiated for PCE-Initiated LSP Setup
* RFC 8231 Extensions for Stateful PCE
e RFC 8232 Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE
* RFC 8282 Extensions to PCEP for Inter-Layer MPLS and GMPLS Traffic Engineering
* RFC 8408 Conveying Path Setup Type in PCE Communication Protocol (PCEP) Messages

e draft-ietf-pce-segment-routing-07, draft-ietf-pce-segment-routing-16, RFC 8664 Segment routing protocol ex-
tensions

e RFC 7470 Conveying Vendor-Specific Constraints
* Draft-ietf-pce-association-group-10 Establishing Relationships Between Sets of Label Switched Paths

* Draft-barth-pce-segment-routing-policy-cp-04 Segment Routing Policy Candidate Paths

16.3 PCEPIib Architecture

The PCEPIib is comprised of the following modules, each of which will be detailed in the following sections.
* pcep_messages
— PCEP messages, objects, and TLVs implementations
* pcep_pce
— PCEPIib public PCC API with a sample PCC binary

* pcep_session_logic

279

https://tools.ietf.org/html/rfc5440
https://tools.ietf.org/html/rfc8281
https://tools.ietf.org/html/rfc8231
https://tools.ietf.org/html/rfc8232
https://tools.ietf.org/html/rfc8282
https://tools.ietf.org/html/rfc8408
https://tools.ietf.org/html/draft-ietf-pce-segment-routing-07
https://tools.ietf.org/html/draft-ietf-pce-segment-routing-16
https://tools.ietf.org/html/rfc8664
https://tools.ietf.org/html/rfc7470
https://tools.ietf.org/html/draft-ietf-pce-association-group-10
https://tools.ietf.org/html/draft-barth-pce-segment-routing-policy-cp-04

FRR Developer’s Manual, Release latest

— PCEP Session handling

* pcep_socket_comm
— Socket communications

* pcep_timers
— PCEP timers

* pcep_utils
— Internal utilities used by the PCEPIlib modules.

The interaction of these modules can be seen in the following diagram.

PCEPIlib Architecture:

Runs in its
own pthread

Runs in its 2

own pthread PCEP
Socket
Comm

PCEP Session Handling

PCEP Timer
PCEP Handler
Sessions

Public
PCC API

initialize_pcce()
destroy_pee()
connect_pce()
disconnect_pce()
send_message()
event_queue get evenl()

PCEP
Session

Logic '
N 4

Runs in its
own pthread

16.3.1 PCEP Session Logic library

The PCEP Session Logic library orchestrates calls to the rest of the PCC libraries.
PCEP Session Logic library responsibilities:
* Handle messages received from “PCEP Socket Comm”
* Create and manage “PCEP Session” objects
* Set timers and react to timer expirations
* Manage counters
The PCEP Session Logic library will have 2 main triggers controlled by a pthread condition variable:
* Timer expirations - on_timer_expire() callback

* Messages received from PCEP SocketComm - message_received() callback

280 Chapter 16. PCEPIib

FRR Developer’s Manual, Release latest

The counters are created and managed using the pcep_utils/pcep_utils_counters.h counters library. The fol-
lowing are the different counter groups managed:

* COUNTER_SUBGROUP_ID_RX_ MSG
* COUNTER_SUBGROUP_ID_TX_MSG
* COUNTER_SUBGROUP_ID_RX OBJ
« COUNTER_SUBGROUP_ID_TX_OBJ
*« COUNTER_SUBGROUP_ID_RX_SUBOBJ
* COUNTER_SUBGROUP_ID_TX SUBOBJ
* COUNTER_SUBGROUP_ID_RX RO_SR_SUBOBJ
*« COUNTER_SUBGROUP_ID_TX_RO_SR_SUBOBJ
« COUNTER_SUBGROUP_ID_RX _TLV
* COUNTER_SUBGROUP_ID_TX_TLV
* COUNTER_SUBGROUP_ID_EVENT
The counters can be obtained and reset as explained later in the PCEPlib PCC API.

16.3.2 PCEP Socket Comm library

PCEP communication can be configured to be handled internally in this simple library. When this library is instantiated
by the PCEP Session Logic, callbacks are provided to handle received messages and error conditions.

The following diagram illustrates how the library works.

PCEPIib Socket Comm:

Runs in its
own pthread

PCEP Socket Handler \

I

Public API

initialize{read/write handlers);
tear_down() Socket FD
send_message{pcep._message *); Sets

on_message_received

PCEP Message
decode

pcep_session_logic::message_received(pcep_message *message)

16.3. PCEPIib Architecture 281

FRR Developer’s Manual, Release latest

16.3.3 PCEP Timers library

Timers can be configured to be handled internally by this library. When this library is instantiated by the PCEP Session
Logic, callbacks are provided to ha:0 ndle timer expirations. The following timers are implemented and handled,
according to RFC 5440.

* Open KeepWait (fixed at 60 seconds)

— Set once the PCC sends an Open, and if it expires before receiving a KeepAlive or PCErr, then the
PCC should send a PCErr and close the TCP connection

¢ Keepalive timer
— How often the PCC should send Keepalive messages to the PCE (and vice-versa)
— The timer will be reset after any message is sent: any message serves as a Keepalive
* DeadTimer
— If no messages are received before expiration, the session is declared as down
— Reset everytime any message is received
* PCReq request timer
— How long the PCC waits for the PCE to reply to PCReq messages.
PCEPIib Timers:

Runs in its
own pthread

PCEP Timer Handler) \

select()

Fublic API

initialize{expire_handler *);
tear_down();

pcep_timer
{* retumns timer_id */
create_timer(pcep_session *, int seconds);
cancel_timer(int timer_id);

reset timer(int timer_id);

on_timer_expire /

pcep_session_logic::on_timer_expire(pcep_session *session)

282 Chapter 16. PCEPIib

https://tools.ietf.org/html/rfc5440

FRR Developer’s Manual, Release latest

16.3.4 PCEP Messages library

The PCEP Messages library has all of the implemented PCEP messages, objects, TLVs, and related functionality.

The following header files can be used for creating and handling received PCEP entities.

* pcep-messages.h

* pcep-objects.h

* pcep-tlvs.h

PCEP Messages

The following PCEP messages can be created and received:

e struct pcep_message* pcep_msg_create_open(...);

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

pcep_message®
pcep_message®
pcep_message*
pcep_message*®
pcep_message®
pcep_message®
pcep_message*®
pcep_message®
pcep_message®
pcep_message®

pcep_message®

pcep_msg_create_open_with_tlvs(...);
pcep_msg_create_request(...);
pcep_msg_create_request_ipv6(...);
pcep_msg_create_reply(...);
pcep_msg_create_close(...);
pcep_msg_create_error(...);
pcep_msg_create_error_with_objects(...);
pcep_msg_create_keepalive(...);
pcep_msg_create_report(...);
pcep_msg_create_update(...);

pcep_msg_create_initiate(...);

Refer to pcep_messages/include/pcep-messages.h and the API section below for more details.

PCEP Objects

The following PCEP objects can be created and received:

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

pcep_object_open* pcep_obj_create_open(...);

pcep_object_rp* pcep_obj_create_rp(...);

pcep_object_notify* pcep_obj_create_notify(...);

pcep_object_nopath* pcep_obj_create_nopath(...);

pcep_object_association_ipv4* pcep_obj_create_association_ipv4(...);

pcep_object_association_ipv6* pcep_obj_create_association_ipv6(...);

pcep_object_endpoints_ipv4* pcep_obj_create_endpoint_ipv4(...);

pcep_object_endpoints_ipv6* pcep_obj_create_endpoint_ipv6(...);

pcep_object_bandwidth* pcep_obj_create_bandwidth(...);

pcep_object_metric* pcep_obj_create_metric(...);

16.3.

PCEPIlib Architecture

283

FRR Developer’s Manual, Release latest

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

struct

pcep_object_lspa* pcep_obj_create_lspa(...);

pcep_object_svec* pcep_obj_create_svec(...);

pcep_object_error* pcep_obj_create_error(...);
pcep_object_close* pcep_obj_create_close(...);

pcep_object_srp* pcep_obj_create_srp(...);

pcep_object_lsp* pcep_obj_create_lsp(...);
pcep_object_vendor_info* pcep_obj_create_vendor_info(...);
pcep_object_ro* pcep_obj_create_ero(...);

pcep_object_ro* pcep_obj_create_rro(...);

pcep_object_ro* pcep_obj_create_iro(...);

pcep_ro_subobj_ipv4* pcep_obj_create_ro_subobj_ipv4(...);
pcep_ro_subobj_ipv6* pcep_obj_create_ro_subobj_ipv6(...);
pcep_ro_subobj_unnum* pcep_obj_create_ro_subobj_unnum(...);
pcep_ro_subobj_32label* pcep_obj_create_ro_subobj_32label(...);
pcep_ro_subobj_asn* pcep_obj_create_ro_subobj_asn(...);
pcep_ro_subobj_sr* pcep_obj_create_ro_subobj_sr_nonai(...);
pcep_ro_subobj_sr* pcep_obj_create_ro_subobj_sr_ipv4_node(...);
pcep_ro_subobj_sr* pcep_obj_create_ro_subobj_sr_ipv6_node(...);
pcep_ro_subobj_sr* pcep_obj_create_ro_subobj_sr_ipv4_adj(...);
pcep_ro_subobj_sr* pcep_obj_create_ro_subobj_sr_ipv6_adj(...);
pcep_ro_subobj_sr* pcep_obj_create_ro_subobj_sr_unnumbered_ipv4_adj(...);

pcep_ro_subobj_sr* pcep_obj_create_ro_subobj_sr_linklocal_ipv6_adj(...);

Refer to pcep_messages/include/pcep-objects.h and the API section below for more details.

PCEP TLVs

The following PCEP TLVs (Tag, Length, Value) can be created and received:
* Open Object TLVs

— struct pcep_object_tlv_stateful_pce_capability® pcep_tlv_create_stateful_pce_capability(.

)5
struct pcep_object_tlv_lsp_db_version* pcep_tlv_create_lsp_db_version(...);

struct pcep_object_tlv_speaker_entity_identifier® pcep_tlv_create_speaker_entity_id(.

.

struct pcep_object_tlv_path_setup_type* pcep_tlv_create_path_setup_type(...

s

struct pcep_object_tlv_path_setup_type_capability* pcep_tlv_create_path_setup_type_capabili
.

struct pcep_object_tlv_sr_pce_capability* pcep_tlv_create_sr_pce_capability(.

.

284

Chapter 16. PCEPIib

FRR Developer’s Manual, Release latest

* LSP Object TLVs

struct pcep_object_tlv_ipv4_lsp_identifier* pcep_tlv_create_ipv4_lsp_identifiers(.

.25

struct pcep_object_tlv_ipv6_lsp_identifier* pcep_tlv_create_ipv6_lsp_identifiers(.

.5

struct pcep_object_tlv_symbolic_path_name* pcep_tlv_create_symbolic_path_name(.

.
struct pcep_object_tlv_lsp_error_code* pcep_tlv_create_lsp_error_code(...);

struct pcep_object_tlv_rsvp_error_spec* pcep_tlv_create_rsvp_ipv4_error_spec(.

.

struct pcep_object_tlv_rsvp_error_spec® pcep_tlv_create_rsvp_ipv6_error_spec(.
)

struct pcep_object_tlv_nopath_vector* pcep_tlv_create_nopath_vector(...);
struct pcep_object_tlv_vendor_info* pcep_tlv_create_vendor_info(...);

struct pcep_object_tlv_arbitrary* pcep_tlv_create_tlv_arbitrary(...);

¢ SRPAG (SR Association Group) TLVs

struct pcep_object_tlv_srpag_pol_id *pcep_tlv_create_srpag_pol_id_ipv4(...);
struct pcep_object_tlv_srpag_pol_id *pcep_tlv_create_srpag_pol_id_ipv6(...);
struct pcep_object_tlv_srpag_pol_name *pcep_tlv_create_srpag_pol name(...);
struct pcep_object_tlv_srpag_cp_id *pcep_tlv_create_srpag_cp_id(...);

struct pcep_object_tlv_srpag_cp_pref *pcep_tlv_create_srpag_cp_pref(...);

Refer to pcep_messages/include/pcep-tlvs.h and the API section below for more details.

16.3.5 PCEP PCC

This module has a Public PCC API library (explained in detail later) and a sample PCC binary. The APIs in this library
encapsulate other PCEPIib libraries for simplicity. With this API, the PCEPlib PCC can be started and stopped, and the
PCEPIib event queue can be accessed. The PCEP Messages library is not encapsulated, and should be used directly.

16.3.6 Internal Dependencies

The following diagram illustrates the internal PCEPIib library dependencies.

PCEPIib internal dependencies:

16.3. PCEPIib Architecture 285

FRR Developer’s Manual, Release latest

pcep_pcc PCC Example binary

{ PCC Public API

pcep_session_logic

pcep_timers
Depends on

pcep_socket comm pcep_utils

0 >—’ ordered_list
double_linked_list
queue

pcep_messages

PCEP message objecis
PCEP encoders [decoders

16.3.7 External Dependencies

Originally the PCEPlib was based on the open source libpcep project, but that dependency has been reduced to just
one source file (pcep-tools.[ch]).

16.3.8 PCEPIib Threading model

The PCEPIib can be run in stand-alone mode whereby a thread is launched for timers and socket comm, as is illustrated
in the following diagram.

PCEPIib Threading model:

PCEP Timers Thread

select()
Main Thread Called from Session
S Logic Thread by :
PCC API Handlers
reset_timer()
) These functions are walk_and_process_

timers{)

CEF i ic called from Timers
PRk ?—ﬁf:;%n LOglC \\ or Socket Thread

N cession_logic timer
Session Event Handlers Ziipand
e CondVar .
handle_timer_event 4 Wait \ M session_logic_msg_ y
j | ready_handler() Rt o cco00 ready()
M session_logic_msg_
sent_handler()

session_logic_conn_

handle_socket_
comm_ewvent()
\ E o L
1 vent except_notifier() message sant()
1, Enqueus Session Event except_notify()

Session

/ 2. Signal CondVar

Called from Session Logie { send_message()
Thread by Session Event
Handlers

286 Chapter 16. PCEPIib

https://www.acreo.se/open-software-libpcep

FRR Developer’s Manual, Release latest

The PCEPIib can also be configured to use an external timers and socket infrastructure like the FRR threads and tasks.
In this case, no internal threads are launched for timers and socket comm, as is illustrated in the following diagram.

PCEPIib Threading model with external infra:

create_timer()

Galled from Sessiony pcep_lib_pceplib_timer_create_ch()

Logic Thread by =
Goasion Evant cancel_timer()

pcep_lib_pceplib_timer_cancel_cb{)

Handlers
reset_timer() pcep_lib_timer_expire()
Cancels the timer
: task and creates a
These functions are Schedule

GEPSQSS i ion Lﬂgjc ¥ called from Timers newene thread_add_"()
LS Th dett o i > or Socket Thread thread_cancel{)

N cession_logic timer
_ - _) : expira_handler()
TG O T message_ready()
handle_timer_event() M session_logic_msg_
ready_handler()
= message_rcvd()
handle_socket_
comm_avent()

message_sent()

M session_logic_msg_
sant_handler()

Task complete
thread_call()

f

Ml session_logic_conn_

except_notifier()
except_notify() pcep_lib_socket_ready()

\ - : e > 1. Enqueue Session Event pcep_lib_pceplib_socket_write_cb()
o S 2. Signal CondVar send_message()
Called from Sessian Lnglc/ pcep_lib_pceplib_socket_read_ch()
Thread by Session Event _Ganecl upon

16.3.9 Building

The autotools build system is used and integrated with the frr build system.

16.3.10 Testing

The Unit Tests for an individual library are executed with the make check command. The Unit Test binary will be
written to the project build directory. All Unit Tests are executed with Valgrind, and any memory issues reported by

Valgrind will cause the Unit Test to fail.

16.4 PCEPIlib PCC API

The following sections describe the PCEPlib PCC APL

16.4. PCEPIib PCC API 287

FRR Developer’s Manual, Release latest

16.4.1 PCEPIib PCC Initialization and Destruction

The PCEPIib can be initialized to handle memory, timers, and socket comm internally in what is called stand-alone

mode, or with an external infrastructure, like FRR.

PCEPIlib PCC Initialization and Destruction in stand-alone mode

PCEPIlib PCC initialization and destruction functions:
* bool initialize_pccQ);
¢ bool initialize_pcc_wait_for_completion();

* bool destroy_pcc(Q);

The PCC can be initialized with either initialize_pcc() or initialize_pcc_wait_for_completion().

e initialize_pcc_wait_for_completion() blocks until destroy_pcc() is called from a
pthread.

e initialize_pcc() is non-blocking and will be stopped when destroy_pcc() is called.
Both initialize functions will launch 3 pthreads:

¢ 1 Timer pthread

* 1 SocketComm pthread

* 1 SessionLogic pthread
When destroy_pcc() is called, all pthreads will be stopped and all resources will be released.

All 3 functions return true upon success, and false otherwise.

PCEPIib PCC Initialization and Destruction with FRR infrastructure

PCEPIib PCC initialization and destruction functions:
¢ bool initialize_pcc_infra(struct pceplib_infra_config *infra_config);
* bool destroy_pcc(Q);
The pceplib_infra_config struct has the following fields:
¢ void *pceplib_infra_mt
— FRR Memory type pointer for infra related memory management
* void *pceplib_messages_mt
— FRR Memory type pointer for PCEP messages related memory management
¢ pceplib_malloc_func mfunc
— FRR malloc function pointer
¢ pceplib_calloc_func cfunc
— FRR calloc function pointer
 pceplib_realloc_func rfunc
— FRR realloc function pointer

¢ pceplib_strdup_func sfunc

separate

288 Chapter 16.

PCEPIib

FRR Developer’s Manual, Release latest

— FRR strdup function pointer
* pceplib_free_func fflunc

— FRR free function pointer
¢ void *external_infra_data

— FRR data used by FRR timers and sockets infrastructure
 ext_timer_create timer_create_func

— FRR timer create function pointer
¢ ext_timer_cancel timer_cancel_func

— FRR timer cancel function pointer
* ext_socket_write socket_write_func

— FRR socket write function pointer, indicating fd is ready to be written to
¢ ext_socket_read socket_read_func

— FRR socket write function pointer, indicating fd is ready to be read from

16.4.2 PCEPIib PCC configuration

PCEPIib PCC configuratoin functions:
e pcep_configuration *create_default_pcep_configuration();
e void destroy_pcep_configuration(pcep_configuration *config);

A pcep_configuration object with default values is created with create_default_pcep_configuration().
These values can be tailored to specific use cases.

Created pcep_configuration objects are destroyed with destroy_pcep_configuration().

PCEPIib PCC configuration paramaters
The pcep_configuration object is defined in pcep_session_logic/include/pcep_session_logic.h The at-
tributes in the pcep_configuration object are detailed as follows.
PCEP Connection parameters:
* dst_pcep_port
— Defaults to 0, in which case the default PCEP TCP destination port 4189 will be used.
— Set to use a specific PCEP TCP destination port.
* src_pcep_port
— Defaults to 0, in which case the default PCEP TCP source port 4189 will be used.
— Set to use a specific PCEP TCP source port.
* Source IP
— Defaults to IPv4 INADDR_ANY
— Set src_ip.src_ipv4 and is_src_ipv6=false to set the source IPv4.

— Set src_ip.src_ipv6 and is_src_ipv6=true to set the source IPv6.

16.4. PCEPIib PCC API 289

FRR Developer’s Manual, Release latest

¢ socket_connect_timeout_millis
— Maximum amount of time to wait to connect to the PCE TCP socket before failing, in milliseconds.
PCEP Versioning:
¢ pcep_msg_versioning->draft_ietf_pce_segment_routing_07
— Defaults to false, in which case draft 16 versioning will be used.
— Set to true to use draft 07 versioning.
PCEP Open Message Parameters:
* keep_alive_seconds
— Sent to PCE in PCEP Open Msg
— Recommended value = 30, Minimum value = 1
— Disabled by setting value = 0
¢ dead_timer_seconds
— Sent to PCE in PCEP Open Msg
— Recommended value = 4 * keepalive timer value
* Supported value ranges for PCEP Open Message received from the PCE
— min_keep_alive_seconds, max_keep_alive_seconds
— min_dead_timer_seconds, max_dead_timer_seconds
e request_time_seconds

— When a PCC sends a PcReq to a PCE, the amount of time a PCC will wait for a PcRep reply from the
PCE.

* max_unknown_requests

— If a PCC/PCE receives PCRep/PCReq messages with unknown requests at a rate equal or greater than
MAX-UNKNOWN-REQUESTS per minute, the PCC/PCE MUST send a PCEP CLOSE message.

— Recommended value = 5
* max_unknown_messages

— If a PCC/PCE receives unrecognized messages at a rate equal or greater than MAX-UNKNOWN-
MESSAGES per minute, the PCC/PCE MUST send a PCEP CLOSE message

— Recommended value = 5

Stateful PCE Capability TLV configuration parameters (RFC 8231, 8232, 8281, and draft-ietf-pce-segment-routing-
16):

* support_stateful_pce_lsp_update

— If this flag is true, then a Stateful PCE Capability TLV will be added to the PCEP Open object, with
the LSP Update Capability U-flag set true.

— The rest of these parameters are used to configure the Stateful PCE Capability TLV
* support_pce_lsp_instantiation
— Sets the I-flag true, indicating the PCC allows instantiation of an LSP by a PCE.

¢ support_include_db_version

290 Chapter 16. PCEPIib

FRR Developer’s Manual, Release latest

— Sets the S-bit true, indicating the PCC will include the LSP-DB-VERSION TLV in each LSP object.
See 1sp_db_version below.

* support_lsp_triggered_resync

— Sets the T-bit true, indicating the PCE can trigger resynchronization of LSPs at any point in the life of
the session.

* support_lsp_delta_sync
— Sets the D-bit true, indicating the PCEP speaker allows incremental (delta) State Synchronization.
¢ support_pce_triggered_initial_sync
— Sets the F-bit true, indicating the PCE SHOULD trigger initial (first) State Synchronization
LSP DB Version TLV configuration parameters:
* Isp_db_version

— If this parameter has a value other than 0, and the above support_include_db_version flag is true, then
an LSP DB Version TLV will be added to the PCEP Open object.

— This parameter should only be set if LSP-DB survived a restart and is available.
— This value will be copied over to the pcep_session upon initialization.
SR PCE Capability sub-TLV configuration parameters (draft-ietf-pce-segment-routing-16):
¢ support_sr_te_pst

— If this flag is true, then an SR PCE Capability sub-TLV will be added to a Path Setup type Capability
TLV, which will be added to the PCEP Open object.

— The PST used in the Path Setup type Capability will be 1, indicating the Path is setup using Segment
Routing Traffic Engineering.

Only set the following fields if the support_sr_te_pst flag is true.
¢ pcc_can_resolve_nai_to_sid

— Sets the N-flag true, indicating that the PCC is capable of resolving a Node or Adjacency Identifier to
a SID

* max_sid_depth
— If set other than 0, then the PCC imposes a limit on the Maximum SID depth.

— If this parameter is other than 0, then the X bit will be true, and the parameter value will be set in the
MSD field.

16.4.3 PCEPIib PCC connections

PCEPIib PCC connect and disconnect functions:
e pcep_session *connect_pce(pcep_configuration *config, struct in_addr *pce_ip);
e pcep_session *connect_pce_ipv6(pcep_configuration *config, struct in6_addr *pce_ip);
e void disconnect_pce(pcep_session *session);

When connecting to a PCE, a pcep_session will be returned on success, NULL otherwise.

Refer to the above PCC configuration parameters section for setting the source and destination PCEP TCP ports, and
the source IP address and version.

16.4. PCEPIib PCC API 291

FRR Developer’s Manual, Release latest

16.4.4 PCEP Messages, Objects, and TLVs

The PCEP messages, objects, and TLVs created in the PCEPIib are high-level API structures, meaning they need to
be encoded before being sent on-the-wire, and the raw data received needs to be decoded into these structures. This
makes using these objects much easier for the library consumer, since they do not need to know the detailed raw format
of the PCEP entities.

PCEP Messages

Received messages (in the pcep_event explained below) are of type pcep_message, which have the following fields:
¢ struct pcep_message_header *msg_header;
— Defines the PCEP version and message type
¢ double_linked_list *obj_list;
— A double linked list of the message objects

— Each entry is a pointer to a struct pcep_object_header, and using the object_class and
object_type fields, the pointer can be cast to the appropriate object structure to access the rest of the
object fields

¢ uint8_t *encoded_message;

— This field is only populated for received messages or once the pcep_encode_message () function has
been called on the message.

— This field is a pointer to the raw PCEP data for the entire message, including all objects and TLVs.
e uintl6_t encoded_message_length;

— This field is only populated for received messages or once the pcep_encode_message () function has
been called on the message.

— This field is the length of the entire raw message, including all objects and TLVs.
— This field is in host byte order.

PCEP Objects
A PCEP message has a double linked list of pointers to struct pcep_object_header structures, which have the
following fields:

* enum pcep_object_classes object_class;

e enum pcep_object_types object_type;

* bool flag_p;

— PCC Processing rule bit: When set, the object MUST be taken into account, when cleared the object
is optional

bool flag_i;

— PCE Ignore bit: indicates to a PCC whether or not an optional object was processed
double_linked_list *tlv_list;

— A double linked list of the object TLVs

— Each entry is a pointer to a struct pcep_object_tlv_header, and using the TLV type field, the
pointer can be cast to the appropriate TLV structure to access the rest of the TLV fields

292 Chapter 16. PCEPIib

FRR Developer’s Manual, Release latest

e uint8_t *encoded_object;

— This field is only populated for received objects or once the pcep_encode_object() (called by
pcep_encode_message()) function has been called on the object.

— Pointer into the encoded_message field (from the pcep_message) where the raw object PCEP data
starts.

* uintl6_t encoded_object_length;

— This field is only populated for received objects or once the pcep_encode_object() (called by
pcep_encode_message ()) function has been called on the object.

— This field is the length of the entire raw TLV
— This field is in host byte order.

The object class and type can be used to cast the struct pcep_object_header pointer to the appropriate object
structure so the specific object fields can be accessed.

PCEP TLVs

A PCEP object has a double linked list of pointers to struct pcep_object_tlv_header structures, which have the
following fields:

* enum pcep_object_tlv_types type;
¢ uint8_t *encoded_tlv;

— This field is only populated for received TLVs or once the pcep_encode_tlv() (called by
pcep_encode_message()) function has been called on the TLV.

— Pointer into the encoded_message field (from the pcep_message) where the raw TLV PCEP data starts.
e uint16_t encoded_tlv_length;

— This field is only populated for received TLVs or once the pcep_encode_tlv() (called by
pcep_encode_message()) function has been called on the TLV.

— This field is the length of the entire raw TLV
— This field is in host byte order.

Memory management

Any of the PCEPlib Message Library functions that receive a pointer to a double_linked_list,
pcep_object_header, or pcep_object_tlv_header, transfer the ownership of the entity to the PCEPIib.
The memory will be freed internally when the encapsulating structure is freed. If the memory for any of these is freed
by the caller, then there will be a double memory free error when the memory is freed internally in the PCEPIib.

Any of the PCEPlib Message Library functions that receive either a pointer to a struct in_addr or struct
in6_addr will allocate memory for the IP address internally and copy the IP address. It is the responsibility of the
caller to manage the memory for the IP address passed into the PCEPIlib Message Library functions.

For messages received via the event queue (explained below), the message will be freed when the event is freed by
calling destroy_pcep_event().

When sending messages, the message will be freed internally in the PCEPlib when the send_message () pcep_pcc
API function when the free_after_send flag is set true.

To manually delete a message, call the pcep_msg_free_message() function. Internally, this will call
pcep_obj_free_object() and pcep_obj_free_tlv() appropriately.

16.4. PCEPIib PCC API 293

FRR Developer’s Manual, Release latest

16.4.5 Sending a PCEP Report message

This section shows how to send a PCEP Report messages from the PCC to the PCE, and serves as an example of how
to send other messages. Refer to the sample PCC binary located in pcep_pcc/src/pcep_pcc.c for code examples
os sending a PCEP Report message.

The Report message must have at least an SRP, LSP, and ERO object.
The PCEP Report message objects are created with the following APIs:

e struct pcep_object_srp *pcep_obj_create_srp(...);

e struct pcep_object_lsp *pcep_obj_create_lsp(...);

e struct pcep_object_ro *pcep_obj_create_ero(...);

— Create ero subobjects with the pcep_obj_create_ro_subobj_*(...); functions

PCEP Report message is created with the following API:

e struct pcep_header *pcep_msg_create_report(double_linked_list *report_object_list);
A PCEP report messages is sent with the following API:

e void send_message(pcep_session *session, pcep_message *message, bool
free_after_send);

16.4.6 PCEPIib Received event queue

PCEP events and messages of interest to the PCEPlib consumer will be stored internally in a message queue for retrieval.
The following are the event types:
* MESSAGE_RECEIVED
* PCE_CLOSED_SOCKET
* PCE_SENT_PCEP_CLOSE
« PCE_DEAD_TIMER_EXPIRED
 PCE_OPEN_KEEP_WAIT_TIMER_EXPIRED
* PCC_CONNECTED_TO_PCE
* PCC_CONNECTION_FAILURE
* PCC_PCEP_SESSION_CLOSED
* PCC_RCVD_INVALID_OPEN
« PCC_SENT_INVALID_OPEN
« PCC_RCVD_MAX INVALID_MSGS
* PCC_RCVD_MAX UNKOWN_MSGS
The following PCEP messages will not be posted on the message queue, as they are handled internally in the library:
¢ Open
¢ Keep Alive
* Close

Received event queue API:

294 Chapter 16. PCEPIib

FRR Developer’s Manual, Release latest

¢ bool event_queue_is_empty();
— Returns true if the queue is empty, false otherwise
e uint32_t event_queue_num_events_available(Q);
— Return the number of events on the queue, 0 if empty
e struct pcep_event *event_queue_get_event();
— Return the next event on the queue, NULL if empty
— The message pointer will only be non-NULL if event_type is MESSAGE_RECEIVED
¢ void destroy_pcep_event(struct pcep_event *event);

— Free the PCEP Event resources, including the PCEP message if present

16.4.7 PCEPIib Counters

The PCEPIlib counters are managed in the pcep_session_logic library, and can be accessed in the
pcep_session_counters field of the pcep_session structure. There are 2 API functions to manage the counters:

¢ void dump_pcep_session_counters(pcep_session *session);
— Dump all of the counters to the logs

e void reset_pcep_session_counters(pcep_session *session);

16.4. PCEPIib PCC API 295

FRR Developer’s Manual, Release latest

296 Chapter 16. PCEPIib

CHAPTER
SEVENTEEN

LINK STATE API DOCUMENTATION

17.1 Introduction

The Link State (LS) API aims to provide a set of structures and functions to build and manage a Traffic Engineering
Database for the various FRR daemons. This API has been designed for several use cases:

* BGP Link State (BGP-LS): where BGP protocol need to collect the link state information from the routing
daemons (IS-IS and/or OSPF) to implement RFC7572

¢ Path Computation Element (PCE): where path computation algorithms are based on Traffic Engineering Database

» ReSerVation Protocol (RSVP): where signaling need to know the Traffic Engineering topology of the network
in order to determine the path of RSVP tunnels

17.2 Architecture

The main requirements from the various uses cases are as follow:

* Provides a set of data model and function to ease Link State information manipulation (storage, serialize, parse

.2)
* Ease and normalize Link State information exchange between FRR daemons
* Provides database structure for Traffic Engineering Database (TED)
To ease Link State understanding, FRR daemons have been classified into two categories:
e Consumer: Daemons that consume Link State information e.g. BGPd

* Producer: Daemons that are able to collect Link State information and send them to consumer daemons e.g.
OSPFd IS-1Sd

Zebra daemon, and more precisely, the ZAPI message is used to convey the Link State information between producer
and consumer, but, Zebra acts as a simple pass through and does not store any Link State information. A new ZAPI
Opaque message has been design for that purpose.

Each consumer and producer daemons are free to store or not Link State data and organise the information following
the Traffic Engineering Database model provided by the API or any other data structure e.g. Hash, RB-tree ...

297

FRR Developer’s Manual, Release latest

17.3 Link State API

This is the low level API that allows any daemons manipulate the Link State elements that are stored in the Link State
Database.

17.3.1 Data structures

3 types of Link State structure have been defined:

struct 1s_node
that groups all information related to a node

struct 1s_attributes
that groups all information related to a link

struct 1s_prefix
that groups all information related to a prefix

These 3 types of structures are those handled by BGP-LS (see RFC7752) and suitable to describe a Traffic Engineering
topology.

Each structure, in addition to the specific parameters, embed the node identifier which advertises the Link State and
a bit mask as flags to indicates which parameters are valid i.e. for which the value is valid and corresponds to a Link
State information conveyed by the routing protocol.

struct 1s_node_id
defines the Node identifier as router ID IPv4 address plus the area ID for OSPF or the ISO System ID plus the
IS-IS level for IS-IS.

17.3.2 Functions

A set of functions is provided to create, delete and compare Link State Node, Atribute and Prefix:

struct Is_node *1s_node_new(struct /s _node_id adv, struct in_addr router_id, struct in6_addr router6_id)

struct [s_attributes *1s_attributes_new(struct Is_node_id adyv, struct in_addr local, struct in6_addr local6,
uint32_tlocal_id)

struct [s_prefix *1s_prefix_new(struct Is_node_id adv, struct prefix p)
Create respectively a new Link State Node, Attribute or Prefix. Structure is dynamically allocated. Link State
Node ID (adv) is mandatory and:

e at least one of IPv4 or [Pv6 must be provided for the router ID (router_id or router6_id) for Node
* at least one of local, local6 or local_id must be provided for Attribute
* prefix is mandatory for Link State Prefix.

void 1s_node_del (struct Is_node *node)
void 1s_attributes_del (struct Is_attributes *attr)

void 1s_prefix_del (struct Is_prefix *pref)
Remove, respectively Link State Node, Attributes or Prefix. Data structure is freed.

298 Chapter 17. Link State APl Documentation

FRR Developer’s Manual, Release latest

void 1s_attributes_srlg_del (struct Is_attributes *attr)
Remove SRLGs attribute if defined. Data structure is freed.

int 1s_node_same (struct /s_node *nl, struct Is_node *n2)
int 1s_attributes_same(struct /s attributes *al, struct Is_attributes *a2)

int 1s_prefix_same(struct [s_prefix *pl, struct Is_prefix *p2)
Check, respectively if two Link State Nodes, Attributes or Prefix are equal. Note that these routines have the
same return value sense as ‘==" (which is different from a comparison).

17.4 Link State TED

This is the high level API that provides functions to create, update, delete a Link State Database to build a Traffic
Engineering Database (TED).

17.4.1 Data Structures

The Traffic Engineering is modeled as a Graph in order to ease Path Computation algorithm implementation. Denoted
G(V, E), a graph is composed by a list of Vertices (V) which represents the network Node and a list of Edges (E) which
represents Link. An additional list of prefixes (P) is also added and also attached to the Verfex (V) which advertise it.

Vertex (V) contains the list of outgoing Edges (E) that connect this Vertex with its direct neighbors and the list of
incoming Edges (E) that connect the direct neighbors to this Vertex. Indeed, the Edge (E) is unidirectional, thus, it is
necessary to add 2 Edges to model a bidirectional relation between 2 Vertices. Finally, the Vertex (V) contains a pointer
to the corresponding Link State Node.

Edge (E) contains the source and destination Vertex that this Edge is connecting and a pointer to the corresponding
Link State Attributes.

A unique Key is used to identify both Vertices and Edges within the Graph.

| Connected |---->| Connected Edge Va to Vb |--->| Connected |
--—>| Vertex | | Vertex [-———>

| I | |

| - Key (Va) | | - Key (Vb) |
<---| - Vertex | e | - Vertex |<----

| |<----| Connected Edge Vb to Va |[<---| |

4 data structures have been defined to implement the Graph model:
struct 1s_vertex
struct 1s_edge
struct 1s_ted
e Is _prefix

TED stores Vertex, Edge and Subnet elements with a RB Tree structure. The Vertex key corresponds to the Router ID
for OSPF and ISO System ID for IS-IS. The Edge key corresponds to the IPv4 address, the lowest 64 bits of the IPv6
address or the combination of the local & remote ID of the interface. The Subnet key corresponds to the Prefix address
(v4 or v6).

17.4. Link State TED 299

FRR Developer’s Manual, Release latest

An additional status for Vertex, Edge and Subnet allows to determine the state of the element in the TED: UNSET,
NEW, UPDATE, DELETE, SYNC, ORPHAN. Normal state is SYNC. NEW, UPDATE and DELETE are temporary
state when element is processed. UNSET is normally never used and ORPHAN serves to identify elements that must
be remove when TED is cleaning.

17.4.2 Vertex, Edges and Subnets management functions

struct [s_vertex *1s_vertex_add(struct Is_red *ted, struct Is_node *node)
struct [s_edge *1s_edge_add (struct Is_red *ted, struct [s_attributes *attributes)

struct Is_subnet *1s_subnet_add (struct Is_red *ted, struct Is_prefix *pref)
Add, respectively new Vertex, Edge or Subnet to the Link State Datebase. Vertex, Edge or Subnet are created
from, respectively the Link State Node, Attribute or Prefix structure. Data structure are dynamically allocated.

struct Is_vertex *1s_vertex_update(struct [s_red *ted, struct Is_node *node)
struct [s_edge *1s_edge_update (struct Is_ted *ted, struct Is_attributes *attributes)

struct Is_subnet *1s_subnet_update (struct Is_fed *ted, struct Is_prefix *pref)
Update, respectively Vertex, Edge or Subnet with, respectively the Link State Node, Attribute or Prefix. A new
data structure is created if no one corresponds to the Link State Node, Attribute or Prefix. If element already
exists in the TED, its associated Link State information is replaced by the new one if there are different and the
old associated Link State information is deleted and memory freed.

void 1s_vertex_del (struct Is_fed *ted, struct Is_vertex *vertex)

void 1s_vertex_del_all (struct /s_ted *ted, struct Is_vertex *vertex)
void 1s_edge_del (struct /s_red *ted, struct [s_edge *edge)

void 1s_edge_del_all (struct Is_ted *ted, struct Is_edge *edge)

void 1s_subnet_del (struct [s_red *ted, struct Is_subnet *subnet)

void 1s_subnet_del_all (struct Is_ted *ted, struct Is_subnet *subnet)
Delete, respectively Link State Vertex, Edge or Subnet. Data structure are freed but not the associated Link State
information with the simple _del() form of the function while the _del_all() version freed also associated Link
State information. TED is not modified if Vertex, Edge or Subnet is NULL or not found in the Data Base. Note
that references between Vertices, Edges and Subnets are removed first.

struct [s_vertex *1s_find_vertex_by_key(struct /s_ted *ted, const uint64_t key)

struct Is_vertex *1s_find_vertex_by_id(struct /s_red *ted, struct Is_node_id id)
Find Vertex in the TED by its unique key or its Link State Node ID. Return Vertex if found, NULL otherwise.

struct Is_edge *1s_find_edge_by_key (struct /s_red *ted, const uint64_t key)

300 Chapter 17. Link State APl Documentation

FRR Developer’s Manual, Release latest

struct Is_edge *1s_£find_edge_by_source(struct Is_red *ted, struct [s_attributes *attributes);

struct [s_edge *1s_£find_edge_by_destination(struct Is_red *ted, struct Is_attributes *attributes);
Find Edge in the Link State Data Base by its key, source or distination (local IPv4 or IPv6 address or local ID)
informations of the Link State Attributes. Return Edge if found, NULL otherwise.

struct Is_subnet *1s_find_subnet (struct /s_red *ted, const struct prefix prefix)
Find Subnet in the Link State Data Base by its key, i.e. the associated prefix. Return Subnet if found, NULL
otherwise.

int 1s_vertex_same(struct [s verfex *vl, struct [s_vertex *v2)
int 1s_edge_same (struct Is_edge *el, struct Is_edge *e2)

int 1s_subnet_same (struct Is_subnet *s1, struct Is_subnet *s2)
Check, respectively if two Vertices, Edges or Subnets are equal. Note that these routines has the same return
value sense as ‘==" (which is different from a comparison).

17.4.3 TED management functions

Some helpers functions have been also provided to ease TED management:

struct [s_ted *1s_ted_new(const uint32_t key, char *name, uint32_t asn)
Create a new Link State Data Base. Key must be different from 0. Name could be NULL and AS number equal
to 0 if unknown.

void 1s_ted_del (struct Is_red *ted)

void 1s_ted_del_all (struct Is_red *ted)
Delete existing Link State Data Base. Vertices, Edges, and Subnets are not removed with 1s_ted_del() function
while they are with 1s_ted_del_all().

void 1s_connect_vertices(struct Is_verfex *src, struct Is_vertex *dst, struct [s_edge *edge)
Connect Source and Destination Vertices by given Edge. Only non NULL source and destination vertices are
connected.

void 1s_connect (struct /s_vertex *vertex, struct Is_edge *edge, bool source)

void 1s_disconnect (struct Is_vertex *vertex, struct [s_edge *edge, bool source)
Connect / Disconnect Link State Edge to the Link State Vertex which could be a Source (source = true) or a
Destination (source = false) Vertex.

void 1s_disconnect_edge (struct /s_edge *edge)
Disconnect Link State Edge from both Source and Destination Vertex. Note that Edge is not removed but its
status is marked as ORPHAN.

void 1s_vertex_clean(struct Is_ted *ted, struct Is_vertex *vertex, struct zclient *zclient)
Clean Vertex structure by removing all Edges and Subnets marked as ORPHAN from this vertex. Corresponding
Link State Update message is sent if zclient parameter is not NULL. Note that associated Link State Attribute
and Prefix are also removed and memory freed.

void 1s_ted_clean(struct Is_ted *ted)
Clean Link State Data Base by removing all Vertices, Edges and SubNets marked as ORPHAN. Note that asso-
ciated Link State Node, Attributes and Prefix are removed too.

17.4. Link State TED 301

FRR Developer’s Manual, Release latest

void 1s_show_vertex(struct [s_vertex *vertex, struct vry *vty, struct json_object *json, bool verbose)

void 1s_show_edge (struct Is_edeg *edge, struct vy *vty, struct json_object *json, bool verbose)

void 1s_show_subnet (struct Is_subnet *subnet, struct vzy *vty, struct json_object *json, bool verbose)
void 1s_show_vertices(struct [s_red *ted, struct vty *vty, struct json_object *json, bool verbose)
void 1s_show_edges (struct Is_fed *ted, struct vty *vty, struct json_object *json, bool verbose)

void 1s_show_subnets (struct /s_ted *ted, struct vry *vty, struct json_object *json, bool verbose)

void 1s_show_ted(struct /s_red *ted, struct vry *vty, struct json_object *json, bool verbose)
Respectively, show Vertex, Edge, Subnet provided as parameter, all Vertices, all Edges, all Subnets and the whole
TED if not specified. Output could be more detailed with verbose parameter for VTY output. If both JSON and
VTY output are specified, JSON takes precedence over VTY.

void 1s_dump_ted(struct Is_red *ted)
Dump TED information to the current logging output.

17.5 Link State Messages

This part of the API provides functions and data structure to ease the communication between the Producer and Con-
sumer daemons.

17.5.1 Communications principles

Recent ZAPI Opaque Message is used to exchange Link State data between daemons. For that purpose, Link State API
provides new functions to serialize and parse Link State information through the ZAPI Opaque message. A dedicated
flag, named ZAPI_OPAQUE_FLAG_UNICAST, allows daemons to send a unicast or a multicast Opaque message and
is used as follow for the Link State exchange:

* Multicast: To send data update to all daemons that have subscribed to the Link State Update message

¢ Unicast: To send initial Link State information from a particular daemon. All data are send only to the daemon
that request Link State Synchronisatio

Figure 1 below, illustrates the ZAPI Opaque message exchange between a Producer (an IGP like OSPF or IS-IS) and
a Consumer (e.g. BGP). The message sequences are as follows:

* First, both Producer and Consumer must register to their respective ZAPI Opaque Message: Link State Sync
for the Producer in order to receive Database synchronisation request from a Consumer, Link State Update for
the Consumer in order to received any Link State update from a Producer. These register messages are stored
by Zebra to determine to which daemon it should redistribute the ZAPI messages it receives.

* Then, the Consumer sends a Link State Synchronistation request with the Multicast method in order to receive
the complete Link State Database from a Producer. ZEBRA daemon forwards this message to any Producer
daemons that previously registered to this message. If no Producer has yet registered, the request is lost. Thus,
if the Consumer receives no response whithin a given timer, it means that no Producer are available right now.
So, the Consumer must send the same request until it receives a Link State Database Synchronistation message.

302 Chapter 17. Link State APl Documentation

FRR Developer’s Manual, Release latest

This behaviour is necessary as we can’t control in which order daemons are started. It is up to the Consumer
daemon to fix the timeout and the number of retry.

* When a Producer receives a Link State Synchronisation request, it starts sending all elements of its own Link
State Database through the Link State Database Synchronisation message. These messages are send with
the Unicast method to avoid flooding other daemons with these elements. ZEBRA layer ensures to forward the
message to the right daemon.

¢ When a Producer update its Link State Database, it automatically sends a Link State Update message with
the Multicast method. In turn, ZEBRA daemon forwards the message to all Consumer daemons that previously
registered to this message. if no daemon is registered, the message is lost.

* A daemon could unregister from the ZAPI Opaque message registry at any time. In this case, the ZEBRA daemon
stops to forward any messages it receives to this daemon, even if it was previously converns.

IGP ZEBRA Consumer
(OSPF/IS-1IS) (ZAPI Opaque Thread) (e.g. BGP)
I I I \
| | Register LS Update [
| [<-=mmmmr - | Register Phase
I I I I
| | Request LS Sync [
I [<==-mmmmmmmr I I
: : : A |
| Register LS Sync | [I
[——mmmmmm >| [/
: : | TimeOut
I
I I [
| | Request LS Sync [v \
| Request LS Sync [<==mmmmm [
[<=mmmmmmm | [Synchronistation
| LS DB Update | | Phase
== - > | LS DB Update |
I [== > | I
| LS DB Update (cont'd) | | |
[-—— > | LS DB Update (cont'd) |
I [-==—mmm > | I
I I I I
I . I I I
| LS DB Update (end) | . [|
[== > | LS DB Update (end) [
I [-==—mmm > | I
I I I /
| LS DB Update | [\
[-————mmmm >| LS DB Update [
| = >| Update Phase
I I I I
. . . /
I I I \

I | Unregister LS Update | |
I [<mmmmmmmmm I Deregister Phase

(continues on next page)

17.5. Link State Messages 303

FRR Developer’s Manual, Release latest

(continued from previous page)

|

|

|
/

| LS DB Update |

|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\%

Figure 1: Link State messages exchange

17.5.2 Data Structures

The Link State Message is defined to convey Link State parameters from the routing protocol (OSPF or IS-IS) to other
daemons e.g. BGP.

struct 1s_message
The structure is composed of:

* Event of the message:

Sync: Send the whole LS DB following a request

Add: Send the a new Link State element

Update: Send an update of an existing Link State element

Delete: Indicate that the given Link State element is removed
* Type of Link State element: Node, Attribute or Prefix

* Remote node id when known

¢ Data: Node, Attributes or Prefix

A Link State Message can carry only one Link State Element (Node, Attributes of Prefix) at once, and only one Link
State Message is sent through ZAPI Opaque Link State type at once.

17.5.3 Functions

int 1s_register (struct zclient *zclient, bool server)

int 1s_unregister (struct zclient *zclient, bool server)
Register / Unregister daemon to received ZAPI Link State Opaque messages. Server must be set to true for
Producer and to false for Consumer.

int 1s_request_sync(struct zclient *zclient)
Request initial Synchronisation to collect the whole Link State Database.

struct [s_message *1s_parse_msg(struct stream *s)
Parse Link State Message from stream. Used this function once receiving a new ZAPI Opaque message of type
Link State.

void 1s_delete_msg(struct Is_message *msg)
Delete existing message. Data structure is freed.

int 1s_send_msg(struct zclient *zclient, struct Is_message *msg, struct zapi_opaque_reg_info *dst)
Send Link State Message as new ZAPI Opaque message of type Link State. If destination is not NULL, message
is sent as Unicast otherwise it is broadcast to all registered daemon.

304 Chapter 17. Link State APl Documentation

FRR Developer’s Manual, Release latest

struct [s_message *1s_vertex2msg(struct [s_message *msg, struct [s_vertex *vertex)

struct [s_message *1s_edge2msg(struct [s_message *msg, struct Is_edge *edge)

struct [s_message *1s_subnet2msg(struct [s_message *msg, struct Is_subnet *subnet)
Create respectively a new Link State Message from a Link State Vertex, Edge or Subnet. If Link State Message
is NULL, a new data structure is dynamically allocated. Note that the Vertex, Edge and Subnet status is used to
determine the corresponding Link State Message event: ADD, UPDATE, DELETE, SYNC.

int 1s_msg2vertex(struct /s_red *ted, struct [s_message *msg)

int 1s_msg2edge (struct /s_ted *ted, struct Is_message *msg)

int 1s_msg2subnet (struct /s_red *ted, struct [s_message *msg)
Convert Link State Message respectively in Vertex, Edge or Subnet and update the Link State Database accord-
ingly to the message event: SYNC, ADD, UPDATE or DELETE.

struct Is_element *1s_msg2ted(struct /s_red *ted, struct Is_message *msg, bool delete)

struct Is_element *1s_stream2ted(struct Is_fed *ted, struct [s_message *msg, bool delete)

Convert Link State Message or Stream Buffer in a Link State element (Vertex, Edge or Subnet) and update
the Link State Database accordingly to the message event: SYNC, ADD, UPDATE or DELETE. The function
return the generic structure 1s_element that point to the Vertex, Edge or Subnet which has been added, updated
or synchronous in the database. Note that the delete boolean parameter governs the action for the DELETE
action: true, Link State Element is removed from the database and NULL is return. If set to false, database is not
updated and the function sets the Link State Element status to Delete and return the element for futur deletion by
the calling function.

int 1s_sync_ted(struct [s_ted *ted, struct zclient *zclient, struct zapi_opaque_reg_info *dst)
Send all the content of the Link State Data Base to the given destination. Link State content is sent is this
order: Vertices, Edges then Subnet. This function must be used when a daemon request a Link State Data Base
Synchronization.

17.5. Link State Messages 305

FRR Developer’s Manual, Release latest

306 Chapter 17. Link State APl Documentation

Symbols
-Wlog-args

command line option, 147
-Wlog-format

command line option, 147
--enable-lttng=yes

configure.ac command line option, 185
--enable-usdt=yes

configure.ac command line option, 185
--profile

command line option, 147
--topology-only

pytest command line option, 207
-o OUTPUT

command line option, 147
-s

pytest command line option, 207

A

asnprintfrr (C function), 133
asprintfrr (C function), 133

B

bprintfrr (C function), 133

C

command line option
-Wlog-args, 147
-Wlog-format, 147
--profile, 147
-o OUTPUT, 147

configure.ac command line option
--enable-lttng=yes, 185
--enable-usdt=yes, 185

csnprintfrr (C function), 133

D

DECLARE_HASH (C macro), 129
DECLARE_HOOK (C macro), 150
DECLARE_KOOH (C macro), 150
DECLARE_MGROUP (C macro), 116

INDEX

DECLARE_MTYPE (C macro), 116
DECLARE_XXX (C macro), 126
DECLARE_XXX_NONUNIQ (C macro), 128
DECLARE_XXX_UNIQ (C macro), 127
DEFINE_HOOK (C macro), 150
DEFINE_KOOH (C macro), 150
DEFINE_MGROUP (C macro), 116
DEFINE_MTYPE (C macro), 116
DEFINE_MTYPE_STATIC (C macro), 116

F?

FMT_NSTD (C macro), 133
frr_each (C macro), 124
frr_each_from (C macro), 124
frr_each_safe (C macro), 124
frr_mutex_lock_autounlock (C macro), 148
frr_rev_each (C macro), 124
frr_rev_each_from (C macro), 124
frr_rev_each_safe (C macro), 124
frr_with_mutex (C macro), 147

F+

hook_call (C function), 150
hook_register (C function), 151
hook_register_arg (C function), 151
hook_register_arg_prio (C function), 151
hook_register_prio (C function), 151
hook_unregister (C function), 151
hook_unregister_arg (C function), 151

L

line (C member), 144
1s_attributes (C struct), 298
1s_attributes_del (C function), 298
1s_attributes_new (C function), 298
ls_attributes_same (C function), 299
ls_attributes_srlg_del (C function), 298
1s_connect (C function), 301
1s_connect_vertices (C function), 301
1s_delete_msg (C function), 304
1s_disconnect (C function), 301
1s_disconnect_edge (C function), 301

307

FRR Developer’s Manual, Release latest

1s_dump_ted (C function), 302
1s_edge (C struct), 299

1s_edge2msg (C function), 305
1s_edge_add (C function), 300
1s_edge_del (C function), 300
1s_edge_del_all (C function), 300
1s_edge_same (C function), 301
1s_edge_update (C function), 300
1s_find_edge_by_destination (C function), 301
1s_find_edge_by_key (C function), 300
1s_find_edge_by_source (C function), 300
1s_find_subnet (C function), 301
1s_find_vertex_by_id (C function), 300
1s_find_vertex_by_key (C function), 300
1s_message (C struct), 304
1s_msg2edge (C function), 305
1s_msg2subnet (C function), 305
1s_msg2ted (C function), 305
1s_msg2vertex (C function), 305
1s_node (C struct), 298

1s_node_del (C function), 298
1s_node_id (C struct), 298
1s_node_new (C function), 298
1s_node_same (C function), 299
1s_parse_msg (C function), 304
1s_prefix (C struct), 298
1s_prefix_del (C function), 298
1s_prefix_new (C function), 298
1s_prefix_same (C function), 299
1s_register (C function), 304
1s_request_sync (C function), 304
1s_send_msg (C function), 304
1s_show_edge (C function), 302
1s_show_edges (C function), 302
1s_show_subnet (C function), 302
1s_show_subnets (C function), 302
1s_show_ted (C function), 302
1s_show_vertex (C function), 301
1s_show_vertices (C function), 302
1s_stream2ted (C function), 305
1s_subnet2msg (C function), 305
1s_subnet_add (C function), 300
1s_subnet_del (C function), 300
1s_subnet_del_all (C function), 300
1s_subnet_same (C function), 301
1s_subnet_update (C function), 300
1s_sync_ted (C function), 305
1s_ted (C struct), 299

1s_ted_clean (C function), 301
1s_ted_del (C function), 301
1s_ted_del_all (C function), 301
1s_ted_new (C function), 301
1s_unregister (C function), 304
1s_vertex (C struct), 299

1s_vertex2msg (C function), 304
1s_vertex_add (C function), 300
1s_vertex_clean (C function), 301
1s_vertex_del (C function), 300
1s_vertex_del_all (C function), 300
1s_vertex_same (C function), 301
1s_vertex_update (C function), 300

M

memtype (C struct), 116

P

pytest command line option
--topology-only, 207
-s, 207

R

rcu_action (C struct), 119
rcu_close (C function), 120
rcu_free (C function), 120
rcu_head (C struct), 119
rcu_head_close (C struct), 119
rcu_read_lock (C function), 119
rcu_read_unlock (C function), 119
rcu_shutdown (C function), 121
rcu_thread (C struct), 120
rcu_thread_prepare (C function), 120
rcu_thread_start (C function), 120
rcu_thread_unprepare (C function), 120
RFC

RFC 2370, 249

RFC 3849,211

RFC 5440, 275

RFC 5737, 211

RFC 8231, 275

RFC 8408, 275

RFC 8664, 275

S

snprintfrr (C function), 133

\Y

va_format (C struct), 139
va_format. fmt (C member), 139
va_format.va (C member), 139
vasnprintfrr (C function), 133
vasprintfrr (C function), 133
vbprintfrr (C function), 133
vesnprintfrr (C function), 133
vsnprintfrr (C function), 133

X

XCALLOC (C function), 117

308

Index

FRR Developer’s Manual, Release latest

XCOUNTFREE (C function), 117

XFREE (C function), 117

XMALLOC (C function), 117

XREALLOC (C function), 117
xref.file (C member), 144

xref. func (C member), 144
xref.type (C member), 144
xref.xrefdata (C member), 145
xrefdata.hashstr (C member), 145
xrefdata.hashu32 (C member), 145
xrefdata.uid (C member), 145
xrefdata.xref (C member), 145
XSTRDUP (C function), 117

Z

Z_add (C function), 128

Z_add_after (C function), 127
Z_add_head (C function), 127
Z_add_tail (C function), 127
Z_anywhere (C function), 127
Z_const_£find (C function), 128
Z_const_£find_gteq (C function), 128
Z_const_£find_1t (C function), 128
Z_const_first (C function), 125
Z_const_last (C function), 125
Z_const_next (C function), 126
Z_const_prev (C function), 126

Z_count (C function), 125

Z_del (C function), 126

Z_find (C function), 128

Z_find_gteq (C function), 128
Z_find_1t (C function), 128

Z_fini (C function), 125

Z_first (C function), 125

Z_init (C function), 125

Z_init_size (C function), 129

Z_last (C function), 125

Z_member (C function), 125

Z_next (C function), 126

Z_next_safe (C function), 126

Z_pop (C function), 125

Z_prev (C function), 126

Z_prev_safe (C function), 126
Z_swap_all (C function), 126
zlog_target (C struct), 143
zlog_target.logfn (C member), 143
zlog_target.logfn_sigsafe (C member), 144
zlog_target_clone (C function), 143
zlog_target_£free (C function), 143
zlog_target_replace (C function), 143
zlog_tls_buffer_fini (C function), 142
zlog_tls_buffer_flush (C function), 142
zlog_tls_buffer_init (C function), 142

Index 309

	Process & Workflow
	Mailing Lists
	Development & Release Cycle
	Development
	Releases
	Long term support branches (LTS)
	Development Branches
	Debian Branches
	Changelog

	Submitting Patches and Enhancements
	License for Contributions
	Pre-submission Checklist
	Signing Off
	After Submitting Your Changes

	Programming Languages, Tools and Libraries
	Use of C++

	Code Reviews
	Guidelines for code review

	Coding Practices & Style
	Commit messages
	Source File Header
	Adding Copyright Claims to Existing Files
	Defensive coding requirements
	Container implementations

	Code Formatting
	C Code
	Exceptions

	Python Code
	YANG
	Specific Exceptions

	Types of configurables
	Compile-time conditional code
	Debug-guards in code
	Custom syntax-like block macros
	Static Analysis and Sanitizers
	Executing non-installed dynamic binaries
	CLI changes
	Backwards Compatibility
	Miscellaneous
	JSON Output
	Use of const
	Help with specific warnings

	Documentation
	Code
	User
	FRR Specific Markup
	CLI Commands
	Configuration Snippets

	Building FRR
	Static Linking
	Procedure

	Alpine Linux 3.7+
	Install docker 17.05 or later
	Pre-built packages and docker images
	Work with sources
	Build apk packages
	Usage

	CentOS 6
	Warning:
	CentOS 6 restrictions:
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr groups and user
	Download Source, configure and compile it
	Create empty FRR configuration files
	Install daemon config file
	Edit /etc/frr/daemons as needed to select the required daemons
	Enable IP & IPv6 forwarding
	Add init.d startup file
	Enable FRR daemon at startup
	Start FRR manually (or reboot)

	CentOS 7
	CentOS 7 restrictions:
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr groups and user
	Download Source, configure and compile it
	Create empty FRR configuration files
	Install daemon config file
	Edit /etc/frr/daemons as needed to select the required daemons
	Enable IP & IPv6 forwarding
	Install frr Service
	Register the systemd files
	Enable required frr at startup
	Reboot or start FRR manually

	CentOS 8
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr groups and user
	Download Source, configure and compile it
	Create empty FRR configuration files
	Install daemon config file
	Edit /etc/frr/daemons as needed to select the required daemons
	Enable IP & IPv6 forwarding
	Install frr Service
	Register the systemd files
	Enable required frr at startup
	Reboot or start FRR manually

	Debian 8
	Debian 8 restrictions:
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr groups and user
	Download Source, configure and compile it
	Create empty FRR configuration files
	Enable IP & IPv6 forwarding
	Troubleshooting

	Debian 9
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr groups and user
	Download Source, configure and compile it
	Create empty FRR configuration files
	Enable IP & IPv6 forwarding

	Troubleshooting
	Shared library error

	Fedora 24+
	Installing Dependencies
	Building & Installing FRR
	Add FRR user and groups
	Compile
	Install FRR configuration files
	Tweak sysctls
	Install frr Service
	Enable daemons
	Start FRR

	openSUSE
	Installing Dependencies
	Building & Installing FRR
	Add FRR user and groups
	Compile
	Install FRR configuration files
	Tweak sysctls
	Install frr Service
	Enable daemons
	Start FRR

	FreeBSD 10
	FreeBSD 10 restrictions:
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr group and user
	Create empty FRR configuration files
	Enable IP & IPv6 forwarding

	FreeBSD 11
	FreeBSD 11 restrictions:
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr group and user
	Download Source, configure and compile it
	Create empty FRR configuration files
	Enable IP & IPv6 forwarding

	FreeBSD 9
	FreeBSD 9 restrictions:
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr group and user
	Create empty FRR configuration files
	Enable IP & IPv6 forwarding

	NetBSD 6
	NetBSD 6 restrictions:
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr groups and user
	Download Source, configure and compile it
	Create empty FRR configuration files
	Enable IP & IPv6 forwarding
	Install rc.d init files
	Enable FRR processes

	NetBSD 7
	NetBSD 7 restrictions:
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr groups and user
	Download Source, configure and compile it
	Create empty FRR configuration files
	Enable IP & IPv6 forwarding
	Install rc.d init files
	Enable FRR processes

	OpenBSD 6
	Install required packages
	Get FRR, compile it and install it (from Git)
	Add frr group and user
	Download Source, configure and compile it
	Create empty FRR configuration files
	Enable IP & IPv6 forwarding
	Enable MPLS Forwarding
	Install rc.d init files
	Enable FRR processes

	OpenWrt
	Prepare build environment
	Get OpenWrt Sources (from Git)
	Work with sources
	Usage
	Enable the service
	Start the service

	Ubuntu 14.04 LTS
	Installing Dependencies
	Building & Installing FRR
	Add FRR user and groups
	Compile
	Install FRR configuration files
	Tweak sysctls
	Add MPLS kernel modules
	Enable MPLS Forwarding

	Install the init.d service
	Enable daemons
	Start the init.d service

	Ubuntu 16.04 LTS
	Installing Dependencies
	Building & Installing FRR
	Add FRR user and groups
	Compile
	Install FRR configuration files
	Tweak sysctls
	Add MPLS kernel modules
	Enable MPLS Forwarding

	Install service files
	Enable daemons
	Start FRR

	Ubuntu 18.04 LTS
	Installing Dependencies
	Protobuf
	ZeroMQ

	Building & Installing FRR
	Add FRR user and groups
	Compile
	Install FRR configuration files
	Tweak sysctls
	Add MPLS kernel modules
	Enable MPLS Forwarding

	Install service files
	Enable daemons
	Start FRR

	Ubuntu 20.04 LTS
	Installing Dependencies
	Protobuf
	ZeroMQ

	Building & Installing FRR
	Add FRR user and groups
	Compile
	Install FRR configuration files
	Tweak sysctls
	Add MPLS kernel modules
	Enable MPLS Forwarding

	Install service files
	Enable daemons
	Start FRR

	Arch Linux
	Installing Dependencies
	Protobuf
	ZeroMQ

	Building & Installing FRR
	Add FRR user and groups
	Compile
	Install FRR configuration files
	Tweak sysctls
	Add MPLS kernel modules
	Enable MPLS Forwarding

	Install service files
	Start FRR

	Docker
	Images
	Scripts
	Building Alpine Image
	Building Debian Image
	Building Centos 7 Image
	Building Centos 8 Image
	Building ubi 8 Image
	Building Ubuntu 18.04 Image
	Building Ubuntu 20.04 Image

	Cross-Compiling
	Toolchain Preliminary
	Testing the Toolchain
	Cross-compiling Dependencies
	Sysroot Overview
	Basic Workflow
	Dependency Notes
	libyang
	gRPC

	Cross-compiling FRR Itself
	Installation to Host Machine
	Troubleshooting
	Mismatched Libraries
	Mismatched Glibc Versions

	Releases & Packaging
	FRR Release Procedure
	Stage 1 - Preparation
	Stage 2 - Staging
	Stage 3 - Publish

	Packaging Debian
	Multi-Distribution builds
	Packaging Red Hat

	Process Architecture
	Overview
	Terminology
	Event Architecture
	The Event Loop

	Kernel Thread Architecture
	Design Overview
	Kernel Thread Wrapper

	Notes on Design and Documentation

	Library Facilities (libfrr)
	Memtypes
	Definition
	Usage

	RCU
	Introduction
	RCU, the TL;DR
	When (not) to use RCU
	Other useful patterns

	FRR API
	Internals

	FRR specifics and implementation details

	Type-safe containers
	Common container interface
	Cheat sheet
	Datastructure type setup
	Common iteration macros
	Common API
	API for unsorted structures
	API for sorted structures
	API for hash tables
	Hash table invariants

	API for heaps
	Atomic lists
	Code snippets

	FAQ
	FRR lists
	BSD lists

	Logging
	printfrr()
	AS-Safety

	printfrr Extensions
	Networking data types
	Time/interval formats
	FRR library helper formats
	FRR daemon specific formats
	zebra
	bgpd
	pimd/pim6d

	General utility formats
	Integer formats

	Log levels
	Errors and warnings
	Informational messages
	Debug messages and asserts

	Thread-local buffering
	Log targets
	Basic internals
	Standard targets

	Introspection (xrefs)
	Enabling and use
	Structure and contents
	Unique identifiers
	Underlying machinery
	Extraction tool

	Locking
	Hooks
	Return values
	Priorities
	Definition
	Callback registration

	Command Line Interface
	Modes
	Walkup

	Deprecation of old style of commands
	Defining Commands
	Definition Grammar
	Tokens
	Rules
	Variable Names
	Doc Strings
	DEFPY
	Type rules
	Getting a parameter dump
	Include & Makefile requirements

	Handlers

	Data Structures
	struct cmd_token
	struct cmd_element

	Command Abbreviation & Matching Priority
	Adding a CLI Node
	Defining the numerical node constant
	Defining a node structure
	Calling install_node()
	Defining and installing the new node in vtysh
	Defining corresponding node entry commands in daemon and vtysh
	Adding a new entry to the ctx_keywords dictionary

	Inspection & Debugging
	Permutations
	Graph Inspection

	Modules
	Limitations
	Installation
	Creating a module
	Compiler & Linker magic
	Command line parameters
	Hooks
	Relation to MTYPE macros

	Scripting
	Overview
	Design
	Why Lua

	General
	Initialization
	Load
	Call
	Input
	Output

	Delete
	A complete example

	Encoding and Decoding
	Encoding
	Decoding
	Registering encoders and decoders for frrscript_call

	Script Environment
	Logging

	Examples

	Fuzzing
	Overview
	Code
	Design
	Adding support to daemons

	Targets
	Fuzzer Notes

	Tracing
	Supported tracers
	Usage
	Concepts
	Adding Tracepoints
	trace.h

	Limitations

	Testing
	Topotests
	Installation and Setup
	Installing Topotest Requirements
	Enable Coredumps
	SNMP Utilities Installation

	FRR Installation
	Manual FRR build

	Executing Tests
	Configure your sudo environment
	Execute all tests in distributed test mode
	Analyze Test Results (analyze.py)
	Execute single test
	StdErr log from daemos after exit
	Collect Memory Leak Information
	Running Topotests with AddressSanitizer
	Debugging Topotest Failures
	Spawning Debugging CLI, vtysh or Shells on Routers on Test Failure
	Spawning vtysh or Shells on Routers
	Debugging with GDB
	Detecting Memleaks with Valgrind

	Running Tests with Docker
	Quickstart
	Advanced Usage
	Development

	Guidelines
	Executing Tests
	Writing a New Test
	Topotest File Hierarchy
	Defining the Topology
	Generating / Obtaining Configuration Files
	Writing Tests

	Debugging Execution

	Markers
	Registering markers
	Adding markers to tests
	Selecting marked modules for testing
	Further Information

	Snippets
	Checking for router / test failures
	Checking FRR routers version
	Interacting with equipment
	Interacting with the Linux sandbox
	Interacting with VTYSH

	Invoking mininet CLI
	Reading files
	Comparing JSON output
	Pausing execution
	iproute2 Linux commands as JSON

	License

	Topotests with JSON
	Overview
	Logging of test case executions
	Guidelines
	Writing New Tests
	File Hierarchy
	Defining the Topology and initial configuration in JSON file
	JSON File Explained
	Building topology and configurations
	Creating configuration files
	Writing Tests

	BGPD
	Next Hop Tracking
	Background
	Goal
	Overview of changes
	Design
	Modules
	zclient message format
	BGP data structure
	Zebra data structure
	User interface changes
	Future work

	BGP-4[+] UPDATE Attribute Preprocessor Constants

	FPM
	fpm
	dplane_fpm_nl
	Protocol Specification

	Version
	Message Type
	Message Length
	Data

	Northbound gRPC
	Programming Language Bindings
	C++ Example
	Generating C++ FRR Bindings
	Using C++ To Get Version and Interfaces State

	Python Example
	Generating Python FRR Bindings
	Using Python To Get Capabilities and Interfaces State

	Ruby Example
	Generating Ruby FRR Bindings
	Using Ruby To Get Interfaces State
	Using Ruby To Create BFD Profiles

	OSPFD
	OSPF API Documentation
	Disclaimer
	Introduction
	Architecture
	Installation & Configuration
	Usage
	Important note:

	Protocol and Message Formats
	Original Acknowledgments from Ralph Keller

	OSPF Segment Routing
	Supported Features
	Interoperability
	Implementation details
	Concepts
	Overview
	Module interactions
	Router Information LSAs
	Extended Link Prefix LSAs
	Zebra
	TI-LFA

	Configuration
	Linux Kernel
	OSPFd

	Known limitations
	Credits

	Zebra
	Overview of the Zebra Protocol
	Version History

	Zebra Protocol Definition
	Zebra Protocol Header Field Definitions
	Current Version
	Past Versions

	Zebra Protocol Commands

	Dataplane batching
	Design
	Netlink

	VTYSH
	Architecture
	Command Extraction
	Special DEFUNs
	Configuration Management
	Example

	Protocol

	PATHD
	Internals
	PATHD Internals
	Architecture
	Overview
	Zebra
	Pathd

	Threading Model
	Source Code
	Internal Data Structures
	Northbound API
	Command Line Client
	Interface with Zebra
	Loadable Module API

	PCEP Module Internals
	Introduction
	Architecture
	Overview

	Threading Model
	Source Code
	Generic Data Structures
	Interface With Pathd
	Command Line Client
	Debugging Helpers
	Interface with pceplib
	Controller
	PCC

	PCEPlib
	Overview
	PCEPlib compliance
	PCEPlib Architecture
	PCEP Session Logic library
	PCEP Socket Comm library
	PCEP Timers library
	PCEP Messages library
	PCEP Messages
	PCEP Objects
	PCEP TLVs

	PCEP PCC
	Internal Dependencies
	External Dependencies
	PCEPlib Threading model
	Building
	Testing

	PCEPlib PCC API
	PCEPlib PCC Initialization and Destruction
	PCEPlib PCC Initialization and Destruction in stand-alone mode
	PCEPlib PCC Initialization and Destruction with FRR infrastructure

	PCEPlib PCC configuration
	PCEPlib PCC configuration paramaters

	PCEPlib PCC connections
	PCEP Messages, Objects, and TLVs
	PCEP Messages
	PCEP Objects
	PCEP TLVs
	Memory management

	Sending a PCEP Report message
	PCEPlib Received event queue
	PCEPlib Counters

	Link State API Documentation
	Introduction
	Architecture
	Link State API
	Data structures
	Functions

	Link State TED
	Data Structures
	Vertex, Edges and Subnets management functions
	TED management functions

	Link State Messages
	Communications principles
	Data Structures
	Functions

	Index

