
Tutorial: Thymeleaf + Spring

Document version: 20181029 - 29 October 2018

Project version: 3.0.11.RELEASE

Project web site: https://www.thymeleaf.org

Thymeleaf

Page 1 of 34

https://www.thymeleaf.org

Preface

This tutorial explains how Thymeleaf can be integrated with the Spring Framework, especially (but not only) Spring

MVC.

Note that Thymeleaf has integrations for both versions 3.x and 4.x of the Spring Framework, provided by two separate

libraries called thymeleaf-spring3 and thymeleaf-spring4 . These libraries are packaged in separate .jar files

(thymeleaf-spring3-{version}.jar and thymeleaf-spring4-{version}.jar) and need to be added to your classpath in

order to use Thymeleaf’s Spring integrations in your application.

The code samples and example application in this tutorial make use of Spring 4.x and its corresponding Thymeleaf

integrations, but the contents of this text are valid also for Spring 3.x. If your application uses Spring 3.x, all you have

to do is replace the org.thymeleaf.spring4 package with org.thymeleaf.spring3 in the code samples.

Page 2 of 34

1 Integrating Thymeleaf with Spring

Thymeleaf offers a set of Spring integrations that allow you to use it as a fully-featured substitute for JSP in Spring

MVC applications.

These integrations will allow you to:

Make the mapped methods in your Spring MVC @Controller objects forward to templates managed by Thymeleaf,

exactly like you do with JSPs.

Use Spring Expression Language (Spring EL) instead of OGNL in your templates.

Create forms in your templates that are completely integrated with your form-backing beans and result bindings,

including the use of property editors, conversion services and validation error handling.

Display internationalization messages from message files managed by Spring (through the usual MessageSource

objects).

Resolve your templates using Spring’s own resource resolution mechanisms.

Note that in order to fully understand this tutorial, you should have first gone through the “Using Thymeleaf” tutorial,

which explains the Standard Dialect in depth.

Page 3 of 34

2 The SpringStandard Dialect

In order to achieve an easier and better integration, Thymeleaf provides a dialect which specifically implements all the

needed features for it to work correctly with Spring.

This specific dialect is based on the Thymeleaf Standard Dialect and is implemented in a class called

org.thymeleaf.spring4.dialect.SpringStandardDialect , which in fact extends from

org.thymeleaf.standard.StandardDialect .

Besides all the features already present in the Standard Dialect –and therefore inherited–, the SpringStandard Dialect

introduces the following specific features:

Use Spring Expression Language (Spring EL or SpEL) as a variable expression language, instead of OGNL.

Consequently, all ${...} and *{...} expressions will be evaluated by Spring’s Expression Language engine. Note

also that support for the Spring EL compiler is available (Spring 4.2.4+).

Access any beans in your application context using SpringEL’s syntax: ${@myBean.doSomething()}

New attributes for form processing: th:field , th:errors and th:errorclass , besides a new implementation of

th:object that allows it to be used for form command selection.

An expression object and method, #themes.code(...) , which is equivalent to the spring:theme JSP custom tag.

An expression object and method, #mvc.uri(...) , which is equivalent to the spring:mvcUrl(...) JSP custom

function (only in Spring 4.1+).

Note that most of the times you shouldn’t be using this dialect directly in a normal TemplateEngine object as a part of its

configuration. Unless you have very specific Spring integration needs, you should instead be creating an instance of a

new template engine class that performs all the required configuration steps automatically:

org.thymeleaf.spring4.SpringTemplateEngine .

An example bean configuration:

Page 4 of 34

@Bean

public SpringResourceTemplateResolver templateResolver(){
 // SpringResourceTemplateResolver automatically integrates with Spring's own

 // resource resolution infrastructure, which is highly recommended.

 SpringResourceTemplateResolver templateResolver = new SpringResourceTemplateResolver();

 templateResolver.setApplicationContext(this.applicationContext);

 templateResolver.setPrefix("/WEB-INF/templates/");

 templateResolver.setSuffix(".html");

 // HTML is the default value, added here for the sake of clarity.

 templateResolver.setTemplateMode(TemplateMode.HTML);

 // Template cache is true by default. Set to false if you want

 // templates to be automatically updated when modified.

 templateResolver.setCacheable(true);

 return templateResolver;
}

@Bean

public SpringTemplateEngine templateEngine(){

 // SpringTemplateEngine automatically applies SpringStandardDialect and

 // enables Spring's own MessageSource message resolution mechanisms.

 SpringTemplateEngine templateEngine = new SpringTemplateEngine();

 templateEngine.setTemplateResolver(templateResolver());

 // Enabling the SpringEL compiler with Spring 4.2.4 or newer can

 // speed up execution in most scenarios, but might be incompatible

 // with specific cases when expressions in one template are reused

 // across different data types, so this flag is "false" by default

 // for safer backwards compatibility.
 templateEngine.setEnableSpringELCompiler(true);

 return templateEngine;

}

Or, using Spring’s XML-based configuration:

<!-- SpringResourceTemplateResolver automatically integrates with Spring's own -->

<!-- resource resolution infrastructure, which is highly recommended. -->

<bean id="templateResolver"

 class="org.thymeleaf.spring4.templateresolver.SpringResourceTemplateResolver">

 <property name="prefix" value="/WEB-INF/templates/" />

 <property name="suffix" value=".html" />

 <!-- HTML is the default value, added here for the sake of clarity. -->

 <property name="templateMode" value="HTML" />

 <!-- Template cache is true by default. Set to false if you want -->

 <!-- templates to be automatically updated when modified. -->
 <property name="cacheable" value="true" />

</bean>

<!-- SpringTemplateEngine automatically applies SpringStandardDialect and -->

<!-- enables Spring's own MessageSource message resolution mechanisms. -->

<bean id="templateEngine"

 class="org.thymeleaf.spring4.SpringTemplateEngine">

 <property name="templateResolver" ref="templateResolver" />

 <!-- Enabling the SpringEL compiler with Spring 4.2.4 or newer can speed up -->

 <!-- execution in most scenarios, but might be incompatible with specific -->

 <!-- cases when expressions in one template are reused across different data -->

 <!-- ypes, so this flag is "false" by default for safer backwards -->

 <!-- compatibility. -->
 <property name="enableSpringELCompiler" value="true" />

</bean>

Page 5 of 34

3 Views and View Resolvers

3.1 Views and View Resolvers in Spring MVC

There are two interfaces in Spring MVC that conform the core of its templating system:

org.springframework.web.servlet.View

org.springframework.web.servlet.ViewResolver

Views model pages in our applications and allow us to modify and predefine their behaviour by defining them as beans.

Views are in charge of rendering the actual HTML interface, usually by the execution of some template engine like

Thymeleaf.

ViewResolvers are the objects in charge of obtaining View objects for a specific operation and locale. Typically,

controllers ask ViewResolvers to forward to a view with a specific name (a String returned by the controller method),

and then all the view resolvers in the application execute in ordered chain until one of them is able to resolve that

view, in which case a View object is returned and control is passed to it for the renderization of HTML.

Note that not all pages in our applications have to be defined as Views, but only those which behaviour we wish

to be non-standard or configured in a specific way (for example, by wiring some special beans to it). If a

ViewResolver is asked a view that has no corresponding bean –which is the common case–, a new View object is

created ad hoc and returned.

A typical configuration for a JSP+JSTL ViewResolver in a Spring MVC application from the past looked like this:

<bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">

 <property name="viewClass" value="org.springframework.web.servlet.view.JstlView" />

 <property name="prefix" value="/WEB-INF/jsps/" />

 <property name="suffix" value=".jsp" />

 <property name="order" value="2" />

 <property name="viewNames" value="*jsp" />

</bean>

A quick look at its properties is enough to know about how it was configured:

viewClass establishes the class of the View instances. This is needed for a JSP resolver, but it will not be needed at

all when we’re working with Thymeleaf.

prefix and suffix work in a similar way to the attributes of the same names in Thymeleaf’s TemplateResolver

objects.

order establishes the order in which the ViewResolver will be queried in the chain.

viewNames allows the definition (with wildcards) of the view names that will be resolved by this ViewResolver.

3.2 Views and View Resolvers in Thymeleaf

Thymeleaf offers implementations for the two interfaces mentioned above:

org.thymeleaf.spring4.view.ThymeleafView

org.thymeleaf.spring4.view.ThymeleafViewResolver

These two classes will be in charge of processing Thymeleaf templates as a result of the execution of controllers.

Configuration of the Thymeleaf View Resolver is very similar to that of JSP:

Page 6 of 34

@Bean

public ThymeleafViewResolver viewResolver(){

 ThymeleafViewResolver viewResolver = new ThymeleafViewResolver();
 viewResolver.setTemplateEngine(templateEngine());

 // NOTE 'order' and 'viewNames' are optional

 viewResolver.setOrder(1);

 viewResolver.setViewNames(new String[] {".html", ".xhtml"});

 return viewResolver;

}

…or in XML:

<bean class="org.thymeleaf.spring4.view.ThymeleafViewResolver">

 <property name="templateEngine" ref="templateEngine" />

 <!-- NOTE 'order' and 'viewNames' are optional -->

 <property name="order" value="1" />

 <property name="viewNames" value="*.html,*.xhtml" />

</bean>

The templateEngine parameter is, of course, the SpringTemplateEngine object we defined in the previous chapter. The

other two (order and viewNames) are both optional, and have the same meaning as in the JSP ViewResolver we saw

before.

Note that we do not need prefix or suffix parameters, because these are already specified at the Template Resolver

(which in turn is passed to the Template Engine).

And what if we wanted to define a View bean and add some static variables to it? Easy, just define a prototype bean for

it:

@Bean

@Scope("prototype")

public ThymeleafView mainView() {

 ThymeleafView view = new ThymeleafView("main"); // templateName = 'main'

 view.setStaticVariables(

 Collections.singletonMap("footer", "The ACME Fruit Company"));

 return view;

}

By doing this, you will be able to execute specifically this view bean selecting it by bean name (mainView , in this case).

Page 7 of 34

4 Spring Thyme Seed Starter Manager

The source code for the examples shown in this and future chapters of this guide can be found in the Spring Thyme

Seed Starter Manager GitHub repository.

4.1 The Concept

At Thymeleaf we’re huge fans of thyme, and every spring we prepare our seed starting kits with good soil and our

favourite seeds, place them under the Spanish sun and patiently wait for our new plants to grow.

But this year we got fed up with sticking labels to the seed starter containers for knowing which seed was in each cell

of the container, so we decided to prepare an application using Spring MVC and Thymeleaf to help us catalogue our

starters: The Spring Thyme SeedStarter Manager.

STSM front page

In a similar way to the Good Thymes Virtual Grocery application we developed in the Using Thymeleaf tutorial, the

STSM will allow us to exemplify the most important aspects of the integration of Thymeleaf as a template engine for

Spring MVC.

Page 8 of 34

https://github.com/thymeleaf/thymeleafexamples-stsm

4.2 Business Layer

We will need a very simple business layer for our application. First of all, let’s have a look at our model entities:

STSM model

A couple of very simple service classes will provide the required business methods. Like:

@Service

public class SeedStarterService {

 @Autowired

 private SeedStarterRepository seedstarterRepository;

 public List<SeedStarter> findAll() {
 return this.seedstarterRepository.findAll();

 }

 public void add(final SeedStarter seedStarter) {

 this.seedstarterRepository.add(seedStarter);

 }

}

And:

Page 9 of 34

@Service

public class VarietyService {

 @Autowired

 private VarietyRepository varietyRepository;

 public List<Variety> findAll() {

 return this.varietyRepository.findAll();

 }

 public Variety findById(final Integer id) {

 return this.varietyRepository.findById(id);

 }

}

4.3 Spring MVC configuration

Next we need to set up the Spring MVC configuration for the application, which will include not only the standard

Spring MVC artifacts like resource handling or annotation scanning, but also the creation of the Template Engine and

View Resolver instances.

@Configuration

@EnableWebMvc

@ComponentScan

public class SpringWebConfig

 extends WebMvcConfigurerAdapter implements ApplicationContextAware {

 private ApplicationContext applicationContext;

 public SpringWebConfig() {

 super();

 }

 public void setApplicationContext(final ApplicationContext applicationContext)

 throws BeansException {

 this.applicationContext = applicationContext;

 }

 /* *** */

 /* GENERAL CONFIGURATION ARTIFACTS */

 /* Static Resources, i18n Messages, Formatters (Conversion Service) */

 /* *** */

 @Override

 public void addResourceHandlers(final ResourceHandlerRegistry registry) {

 super.addResourceHandlers(registry);

 registry.addResourceHandler("/images/**").addResourceLocations("/images/");

 registry.addResourceHandler("/css/**").addResourceLocations("/css/");

 registry.addResourceHandler("/js/**").addResourceLocations("/js/");

 }

 @Bean

 public ResourceBundleMessageSource messageSource() {

 ResourceBundleMessageSource messageSource = new ResourceBundleMessageSource();

 messageSource.setBasename("Messages");

 return messageSource;

 }

Page 10 of 34

 }

 @Override

 public void addFormatters(final FormatterRegistry registry) {

 super.addFormatters(registry);

 registry.addFormatter(varietyFormatter());

 registry.addFormatter(dateFormatter());

 }

 @Bean

 public VarietyFormatter varietyFormatter() {
 return new VarietyFormatter();

 }

 @Bean

 public DateFormatter dateFormatter() {

 return new DateFormatter();

 }

 /* ** */

 /* THYMELEAF-SPECIFIC ARTIFACTS */

 /* TemplateResolver <- TemplateEngine <- ViewResolver */

 /* ** */

 @Bean

 public SpringResourceTemplateResolver templateResolver(){

 // SpringResourceTemplateResolver automatically integrates with Spring's own

 // resource resolution infrastructure, which is highly recommended.

 SpringResourceTemplateResolver templateResolver = new SpringResourceTemplateResolver();

 templateResolver.setApplicationContext(this.applicationContext);

 templateResolver.setPrefix("/WEB-INF/templates/");

 templateResolver.setSuffix(".html");

 // HTML is the default value, added here for the sake of clarity.

 templateResolver.setTemplateMode(TemplateMode.HTML);
 // Template cache is true by default. Set to false if you want

 // templates to be automatically updated when modified.

 templateResolver.setCacheable(true);

 return templateResolver;

 }

 @Bean

 public SpringTemplateEngine templateEngine(){

 // SpringTemplateEngine automatically applies SpringStandardDialect and
 // enables Spring's own MessageSource message resolution mechanisms.

 SpringTemplateEngine templateEngine = new SpringTemplateEngine();
 templateEngine.setTemplateResolver(templateResolver());

 // Enabling the SpringEL compiler with Spring 4.2.4 or newer can
 // speed up execution in most scenarios, but might be incompatible
 // with specific cases when expressions in one template are reused

 // across different data types, so this flag is "false" by default
 // for safer backwards compatibility.

 templateEngine.setEnableSpringELCompiler(true);
 return templateEngine;

 }

 @Bean
 public ThymeleafViewResolver viewResolver(){

 ThymeleafViewResolver viewResolver = new ThymeleafViewResolver();
 viewResolver.setTemplateEngine(templateEngine());

 return viewResolver;
 }

}

Page 11 of 34

4.4 The Controller

Of course, we will also need a controller for our application. As the STSM will only contain one web page with a list of

seed starters and a form for adding new ones, we will write only one controller class for all the server interactions:

@Controller
public class SeedStarterMngController {

 @Autowired

 private VarietyService varietyService;

 @Autowired
 private SeedStarterService seedStarterService;

 ...

}

Now let’s see what we can add to this controller class.

Model Attributes

First we will add some model attributes that we will need in the page:

@ModelAttribute("allTypes")

public List<Type> populateTypes() {
 return Arrays.asList(Type.ALL);

}

@ModelAttribute("allFeatures")
public List<Feature> populateFeatures() {

 return Arrays.asList(Feature.ALL);
}

@ModelAttribute("allVarieties")
public List<Variety> populateVarieties() {

 return this.varietyService.findAll();
}

@ModelAttribute("allSeedStarters")

public List<SeedStarter> populateSeedStarters() {
 return this.seedStarterService.findAll();

}

Mapped methods

And now the most important part of a controller, the mapped methods: one for showing the form page, and another

one for processing the addition of new SeedStarter objects.

Page 12 of 34

@RequestMapping({"/","/seedstartermng"})
public String showSeedstarters(final SeedStarter seedStarter) {

 seedStarter.setDatePlanted(Calendar.getInstance().getTime());
 return "seedstartermng";
}

@RequestMapping(value="/seedstartermng", params={"save"})

public String saveSeedstarter(
 final SeedStarter seedStarter, final BindingResult bindingResult, final ModelMap model) {

 if (bindingResult.hasErrors()) {
 return "seedstartermng";

 }
 this.seedStarterService.add(seedStarter);

 model.clear();
 return "redirect:/seedstartermng";

}

4.5 Configuring a Conversion Service

In order to allow easy formatting of Date and also Variety objects in our view layer, we configured our application so

that a Spring ConversionService object was created and initialized (by the WebMvcConfigurerAdapter we extend) with a

couple of formatter objects we will need. See it again:

@Override

public void addFormatters(final FormatterRegistry registry) {
 super.addFormatters(registry);

 registry.addFormatter(varietyFormatter());
 registry.addFormatter(dateFormatter());

}

@Bean

public VarietyFormatter varietyFormatter() {
 return new VarietyFormatter();

}

@Bean
public DateFormatter dateFormatter() {

 return new DateFormatter();
}

Spring formatters are implementations of the org.springframework.format.Formatter interface. For more information

on how the Spring conversion infrastructure works, see the docs at spring.io.

Let’s have a look at the DateFormatter , which formats dates according to a format string present at the date.format

message key of our Messages.properties :

Page 13 of 34

http://docs.spring.io/spring/docs/4.3.x/spring-framework-reference/html/validation.html#core-convert

public class DateFormatter implements Formatter<Date> {

 @Autowired
 private MessageSource messageSource;

 public DateFormatter() {
 super();

 }

 public Date parse(final String text, final Locale locale) throws ParseException {
 final SimpleDateFormat dateFormat = createDateFormat(locale);

 return dateFormat.parse(text);
 }

 public String print(final Date object, final Locale locale) {

 final SimpleDateFormat dateFormat = createDateFormat(locale);
 return dateFormat.format(object);

 }

 private SimpleDateFormat createDateFormat(final Locale locale) {

 final String format = this.messageSource.getMessage("date.format", null, locale);
 final SimpleDateFormat dateFormat = new SimpleDateFormat(format);

 dateFormat.setLenient(false);
 return dateFormat;

 }

}

The VarietyFormatter automatically converts between our Variety entities and the way we want to use them in our

forms (basically, by their id field values):

public class VarietyFormatter implements Formatter<Variety> {

 @Autowired
 private VarietyService varietyService;

 public VarietyFormatter() {

 super();
 }

 public Variety parse(final String text, final Locale locale) throws ParseException {

 final Integer varietyId = Integer.valueOf(text);
 return this.varietyService.findById(varietyId);

 }

 public String print(final Variety object, final Locale locale) {

 return (object != null ? object.getId().toString() : "");
 }

}

We will learn more on how these formatters affect the way our data is displayed later on.

Page 14 of 34

5 Listing Seed Starter Data

The first thing that our /WEB-INF/templates/seedstartermng.html page will show is a listing with the seed starters

currently stored. For this we will need some externalized messages and also some expression evaluation on model

attributes. Like this:

<div class="seedstarterlist" th:unless="${#lists.isEmpty(allSeedStarters)}">

 <h2 th:text="#{title.list}">List of Seed Starters</h2>

 <table>
 <thead>

 <tr>
 <th th:text="#{seedstarter.datePlanted}">Date Planted</th>

 <th th:text="#{seedstarter.covered}">Covered</th>
 <th th:text="#{seedstarter.type}">Type</th>

 <th th:text="#{seedstarter.features}">Features</th>
 <th th:text="#{seedstarter.rows}">Rows</th>

 </tr>
 </thead>

 <tbody>
 <tr th:each="sb : ${allSeedStarters}">

 <td th:text="${{sb.datePlanted}}">13/01/2011</td>
 <td th:text="#{|bool.${sb.covered}|}">yes</td>

 <td th:text="#{|seedstarter.type.${sb.type}|}">Wireframe</td>
 <td th:text="${#strings.arrayJoin(

 #messages.arrayMsg(
 #strings.arrayPrepend(sb.features,'seedstarter.feature.')),

 ', ')}">Electric Heating, Turf</td>
 <td>
 <table>

 <tbody>
 <tr th:each="row,rowStat : ${sb.rows}">

 <td th:text="${rowStat.count}">1</td>
 <td th:text="${row.variety.name}">Thymus Thymi</td>

 <td th:text="${row.seedsPerCell}">12</td>
 </tr>

 </tbody>
 </table>

 </td>
 </tr>

 </tbody>
 </table>

</div>

Lots to see here. Let’s have a look at each fragment separately.

First of all, this section will only be shown if there are any seed starters. We achieve that with a th:unless attribute and

the #lists.isEmpty(...) function.

<div class="seedstarterlist" th:unless="${#lists.isEmpty(allSeedStarters)}">

Note that all utility objects like #lists are available in Spring EL expressions just as they were in OGNL expressions in

the Standard Dialect.

The next thing to see is a lot of internationalized (externalized) texts, like:

Page 15 of 34

<h2 th:text="#{title.list}">List of Seed Starters</h2>

<table>

 <thead>
 <tr>

 <th th:text="#{seedstarter.datePlanted}">Date Planted</th>
 <th th:text="#{seedstarter.covered}">Covered</th>

 <th th:text="#{seedstarter.type}">Type</th>
 <th th:text="#{seedstarter.features}">Features</th>

 <th th:text="#{seedstarter.rows}">Rows</th>
 ...

This being a Spring MVC application, we already defined a MessageSource bean in our Spring configuration

(MessageSource objects are the standard way of managing externalized texts in Spring MVC):

@Bean

public ResourceBundleMessageSource messageSource() {
 ResourceBundleMessageSource messageSource = new ResourceBundleMessageSource();
 messageSource.setBasename("Messages");

 return messageSource;
}

…and that basename property indicates that we will have files like Messages_es.properties or

Messages_en.properties in our classpath. Let’s have a look at the Spanish version:

title.list=Lista de semilleros

date.format=dd/MM/yyyy

bool.true=sí
bool.false=no

seedstarter.datePlanted=Fecha de plantación

seedstarter.covered=Cubierto
seedstarter.type=Tipo

seedstarter.features=Características
seedstarter.rows=Filas

seedstarter.type.WOOD=Madera
seedstarter.type.PLASTIC=Plástico

seedstarter.feature.SEEDSTARTER_SPECIFIC_SUBSTRATE=Sustrato específico para semilleros

seedstarter.feature.FERTILIZER=Fertilizante
seedstarter.feature.PH_CORRECTOR=Corrector de PH

In the first column of the table listing we will show the date when the seed starter was prepared. But we will show it

formatted in the way we defined in our DateFormatter . In order to do that we will use the double-brace syntax

(${{...}}), which will automatically apply the Spring Conversion Service, including the DateFormatter we registered

at configuration.

<td th:text="${{sb.datePlanted}}">13/01/2011</td>

Next is showing whether the seed starter container is covered or not, by transforming the value of the boolean

covered bean property into an internationalized “yes” or “no” with a literal substitution expression:

<td th:text="#{|bool.${sb.covered}|}">yes</td>

Now we have to show the type of seed starter container. Type is a java enum with two values (WOOD and PLASTIC), and

that’s why we defined two properties in our Messages file called seedstarter.type.WOOD and

Page 16 of 34

seedstarter.type.PLASTIC .

But in order to obtain the internationalized names of the types, we will need to add the seedstarter.type. prefix to

the enum value by means of an expression, which result we will then use as the message key:

<td th:text="#{|seedstarter.type.${sb.type}|}">Wireframe</td>

The most difficult part of this listing is the features column. In it we want to display all the features of our container —

that come in the form of an array of Feature enums—, separated by commas. Like “Electric Heating, Turf”.

Note that this is particularly difficult because these enum values also need to be externalized, as we did with Types.

The flow is then:

1. Prepend the corresponding prefix to all the elements of the features array.

2. Obtain the externalized messages corresponding to all the keys from step 1.

3. Join all the messages obtained in step 2, using a comma as a delimiter.

For achieving this, we create the following code:

<td th:text="${#strings.arrayJoin(

 #messages.arrayMsg(
 #strings.arrayPrepend(sb.features,'seedstarter.feature.')),

 ', ')}">Electric Heating, Turf</td>

The last column of our listing will be quite simple, in fact. Even if it has a nested table for showing the contents of each

row in the container:

<td>
 <table>

 <tbody>
 <tr th:each="row,rowStat : ${sb.rows}">

 <td th:text="${rowStat.count}">1</td>
 <td th:text="${row.variety.name}">Thymus Thymi</td>

 <td th:text="${row.seedsPerCell}">12</td>
 </tr>

 </tbody>
 </table>
</td>

Page 17 of 34

6 Creating a Form

6.1 Handling the command object

Command object is the name Spring MVC gives to form-backing beans, this is, to objects that model a form’s fields and

provide getter and setter methods that will be used by the framework for establishing and obtaining the values input

by the user at the browser side.

Thymeleaf requires you to specify the command object by using a th:object attribute in your <form> tag:

<form action="#" th:action="@{/seedstartermng}" th:object="${seedStarter}" method="post">

 ...
</form>

This is consistent with other uses of th:object, but in fact this specific scenario adds some limitations in order to

correctly integrate with Spring MVC’s infrastructure:

Values for th:object attributes in form tags must be variable expressions (${...}) specifying only the name of a

model attribute, without property navigation. This means that an expression like ${seedStarter} is valid, but

${seedStarter.data} would not be.

Once inside the <form> tag, no other th:object attribute can be specified. This is consistent with the fact that HTML

forms cannot be nested.

6.2 Inputs

Let’s see now how to add an input to our form:

<input type="text" th:field="*{datePlanted}" />

As you can see, we are introducing a new attribute here: th:field. This is a very important feature for Spring MVC

integration because it does all the heavy work of binding your input with a property in the form-backing bean. You can

see it as an equivalent of the path attribute in a tag from Spring MVC’s JSP tag library.

The th:field attribute behaves differently depending on whether it is attached to an <input> , <select> or

<textarea> tag (and also depending on the specific type of <input> tag). In this case (input[type=text]), the above

line of code is similar to:

<input type="text" id="datePlanted" name="datePlanted" th:value="*{datePlanted}" />

…but in fact it is a little bit more than that, because th:field will also apply the registered Spring Conversion Service,

including the DateFormatter we saw before (even if the field expression is not double-bracketed). Thanks to this, the

date will be shown correctly formatted.

Values for th:field attributes must be selection expressions (*{...}), which makes sense given the fact that they

will be evaluated on the form-backing bean and not on the context variables (or model attributes in Spring MVC

jargon).

Contrary to the ones in th:object , these expressions can include property navigation (in fact any expression allowed

for the path attribute of a <form:input> JSP tag will be allowed here).

Note that th:field also understands the new types of <input> element introduced by HTML5 like <input

Page 18 of 34

type="datetime" ... /> , <input type="color" ... /> , etc., effectively adding complete HTML5 support to Spring

MVC.

6.3 Checkbox fields

th:field also allows us to define checkbox inputs. Let’s see an example from our HTML page:

<div>
 <label th:for="${#ids.next('covered')}" th:text="#{seedstarter.covered}">Covered</label>

 <input type="checkbox" th:field="*{covered}" />
</div>

Note there’s some fine stuff here besides the checkbox itself, like an externalized label and also the use of the

#ids.next('covered') function for obtaining the value that will be applied to the id attribute of the checkbox input.

Why do we need this dynamic generation of an id attribute for this field? Because checkboxes are potentially multi-

valued, and thus their id values will always be suffixed a sequence number (by internally using the #ids.seq(...)

function) in order to ensure that each of the checkbox inputs for the same property has a different id value.

We can see this more easily if we look at such a multi-valued checkbox field:

 <li th:each="feat : ${allFeatures}">

 <input type="checkbox" th:field="*{features}" th:value="${feat}" />
 <label th:for="${#ids.prev('features')}"
 th:text="#{${'seedstarter.feature.' + feat}}">Heating</label>

Note that we’ve added a th:value attribute this time, because the features field is not a boolean like covered was, but

instead is an array of values.

Let’s see the HTML output generated by this code:

 <input id="features1" name="features" type="checkbox" value="SEEDSTARTER_SPECIFIC_SUBSTRATE" />

 <input name="_features" type="hidden" value="on" />
 <label for="features1">Seed starter-specific substrate</label>

 <input id="features2" name="features" type="checkbox" value="FERTILIZER" />
 <input name="_features" type="hidden" value="on" />

 <label for="features2">Fertilizer used</label>

 <input id="features3" name="features" type="checkbox" value="PH_CORRECTOR" />
 <input name="_features" type="hidden" value="on" />

 <label for="features3">PH Corrector used</label>

We can see here how a sequence suffix is added to each input’s id attribute, and how the #ids.prev(...) function

allows us to retrieve the last sequence value generated for a specific input id.

Page 19 of 34

Don’t worry about those hidden inputs with name="_features" : they are automatically added in order to avoid

problems with browsers not sending unchecked checkbox values to the server upon form submission.

Also note that if our features property contained some selected values in our form-backing bean, th:field would have

taken care of that and would have added a checked="checked" attribute to the corresponding input tags.

6.4 Radio Button fields

Radio button fields are specified in a similar way to non-boolean (multi-valued) checkboxes —except that they are not

multivalued, of course:

 <li th:each="ty : ${allTypes}">
 <input type="radio" th:field="*{type}" th:value="${ty}" />

 <label th:for="${#ids.prev('type')}" th:text="#{${'seedstarter.type.' + ty}}">Wireframe</label>

6.5 Dropdown/List selectors

Select fields have two parts: the <select> tag and its nested <option> tags. When creating this kind of field, only the

<select> tag has to include a th:field attribute, but the th:value attributes in the nested <option> tags will be

very important because they will provide the means of knowing which is the currently selected option (in a similar way

to non-boolean checkboxes and radio buttons).

Let’s re-build the type field as a dropdown select:

<select th:field="*{type}">
 <option th:each="type : ${allTypes}"

 th:value="${type}"
 th:text="#{${'seedstarter.type.' + type}}">Wireframe</option>

</select>

At this point, understanding this piece of code is quite easy. Just notice how attribute precedence allows us to set the

th:each attribute in the <option> tag itself.

6.6 Dynamic fields

Thanks to the advanced form-field binding capabilities in Spring MVC, we can use complex Spring EL expressions to

bind dynamic form fields to our form-backing bean. This will allow us to create new Row objects in our SeedStarter

bean, and to add those rows’ fields to our form at user request.

In order to do this, we will need a couple of new mapped methods in our controller, which will add or remove a row

from our SeedStarter depending on the existence of specific request parameters:

Page 20 of 34

@RequestMapping(value="/seedstartermng", params={"addRow"})
public String addRow(final SeedStarter seedStarter, final BindingResult bindingResult) {

 seedStarter.getRows().add(new Row());
 return "seedstartermng";

}

@RequestMapping(value="/seedstartermng", params={"removeRow"})
public String removeRow(

 final SeedStarter seedStarter, final BindingResult bindingResult,
 final HttpServletRequest req) {

 final Integer rowId = Integer.valueOf(req.getParameter("removeRow"));
 seedStarter.getRows().remove(rowId.intValue());

 return "seedstartermng";
}

And now we can add a dynamic table to our form:

<table>

 <thead>
 <tr>

 <th th:text="#{seedstarter.rows.head.rownum}">Row</th>
 <th th:text="#{seedstarter.rows.head.variety}">Variety</th>

 <th th:text="#{seedstarter.rows.head.seedsPerCell}">Seeds per cell</th>
 <th>

 <button type="submit" name="addRow" th:text="#{seedstarter.row.add}">Add row</button>
 </th>

 </tr>
 </thead>

 <tbody>
 <tr th:each="row,rowStat : *{rows}">
 <td th:text="${rowStat.count}">1</td>

 <td>
 <select th:field="*{rows[__${rowStat.index}__].variety}">

 <option th:each="var : ${allVarieties}"
 th:value="${var.id}"

 th:text="${var.name}">Thymus Thymi</option>
 </select>

 </td>
 <td>

 <input type="text" th:field="*{rows[__${rowStat.index}__].seedsPerCell}" />
 </td>

 <td>
 <button type="submit" name="removeRow"

 th:value="${rowStat.index}" th:text="#{seedstarter.row.remove}">Remove row</button>
 </td>

 </tr>
 </tbody>

</table>

Quite a lot of things to see here, but not much we should not understand by now… except for one strange thing:

<select th:field="*{rows[__${rowStat.index}__].variety}">

 ...

</select>

If you recall from the “Using Thymeleaf” tutorial, that __${...}__ syntax is a preprocessing expression, which is an

inner expression that is evaluated before actually evaluating the whole expression. But why that way of specifying the

row index? Wouldn’t it be enough with:

Page 21 of 34

<select th:field="*{rows[rowStat.index].variety}">

 ...

</select>

…well, actually, no. The problem is that Spring EL does not evaluate variables inside array index brackets, so when

executing the above expression we would obtain an error telling us that rows[rowStat.index] (instead of rows[0] ,

rows[1] , etc) is not a valid position in the rows collection. That’s why preprocessing is needed here.

Let’s have a look at a fragment of the resulting HTML after pressing “Add Row” a couple of times:

<tbody>
 <tr>

 <td>1</td>
 <td>
 <select id="rows0.variety" name="rows[0].variety">

 <option selected="selected" value="1">Thymus vulgaris</option>
 <option value="2">Thymus x citriodorus</option>
 <option value="3">Thymus herba-barona</option>
 <option value="4">Thymus pseudolaginosus</option>

 <option value="5">Thymus serpyllum</option>
 </select>
 </td>
 <td>
 <input id="rows0.seedsPerCell" name="rows[0].seedsPerCell" type="text" value="" />

 </td>
 <td>
 <button name="removeRow" type="submit" value="0">Remove row</button>
 </td>

 </tr>
 <tr>
 <td>2</td>
 <td>

 <select id="rows1.variety" name="rows[1].variety">
 <option selected="selected" value="1">Thymus vulgaris</option>
 <option value="2">Thymus x citriodorus</option>
 <option value="3">Thymus herba-barona</option>

 <option value="4">Thymus pseudolaginosus</option>
 <option value="5">Thymus serpyllum</option>
 </select>
 </td>

 <td>
 <input id="rows1.seedsPerCell" name="rows[1].seedsPerCell" type="text" value="" />
 </td>
 <td>

 <button name="removeRow" type="submit" value="1">Remove row</button>
 </td>
 </tr>
</tbody>

Page 22 of 34

7 Validation and Error Messages

Most of our forms will need to show validation messages in order to inform the user of the errors he/she has made.

Thymeleaf offers some tools for this: a couple of functions in the #fields object, the th:errors and the

th:errorclass attributes.

7.1 Field errors

Let’s see how we could set a specific CSS class to a field if it has an error:

<input type="text" th:field="*{datePlanted}"
 th:class="${#fields.hasErrors('datePlanted')}? fieldError" />

As you can see, the #fields.hasErrors(...) function receives the field expression as a parameter (datePlanted), and

returns a boolean telling whether any validation errors exist for that field.

We could also obtain all the errors for that field and iterate them:

 <li th:each="err : ${#fields.errors('datePlanted')}" th:text="${err}" />

Instead of iterating, we could have also used th:errors , a specialized attribute which builds a list with all the errors for

the specified selector, separated by
 :

<input type="text" th:field="*{datePlanted}" />
<p th:if="${#fields.hasErrors('datePlanted')}" th:errors="*{datePlanted}">Incorrect date</p>

Simplifying error-based CSS styling: th:errorclass

The example we saw above, setting a CSS class to a form input if that field has errors , is so common that Thymeleaf

offers a specific attribute for doing exacly that: th:errorclass .

Applied to a form field tag (input, select, textarea…), it will read the name of the field to be examined from any

existing name or th:field attributes in the same tag, and then append the specified CSS class to the tag if such field

has any associated errors:

<input type="text" th:field="*{datePlanted}" class="small" th:errorclass="fieldError" />

If datePlanted has errors, this will render as:

<input type="text" id="datePlanted" name="datePlanted" value="2013-01-01" class="small fieldError" />

7.2 All errors

And what if we want to show all the errors in the form? We just need to query the #fields.hasErrors(...) and

#fields.errors(...) methods with the '*' or 'all' constants (which are equivalent):

Page 23 of 34

<ul th:if="${#fields.hasErrors('*')}">
 <li th:each="err : ${#fields.errors('*')}" th:text="${err}">Input is incorrect

As in the examples above, we could obtain all the errors and iterate them…

 <li th:each="err : ${#fields.errors('*')}" th:text="${err}" />

…as well as build a
 -separated list:

<p th:if="${#fields.hasErrors('all')}" th:errors="*{all}">Incorrect date</p>

Finally note that #fields.hasErrors('*') is equivalent to #fields.hasAnyErrors() and #fields.errors('*') is

equivalent to #fields.allErrors() . Use whichever syntax you prefer:

<div th:if="${#fields.hasAnyErrors()}">

 <p th:each="err : ${#fields.allErrors()}" th:text="${err}">...</p>
</div>

7.3 Global errors

There is a third type of error in a Spring form: global errors. These are errors that are not associated with any specific

fields in the form, but still exist.

Thymeleaf offers the global constant for accessing these errors:

<ul th:if="${#fields.hasErrors('global')}">
 <li th:each="err : ${#fields.errors('global')}" th:text="${err}">Input is incorrect

<p th:if="${#fields.hasErrors('global')}" th:errors="*{global}">Incorrect date</p>

…as well as equivalent #fields.hasGlobalErrors() and #fields.globalErrors() convenience methods:

<div th:if="${#fields.hasGlobalErrors()}">
 <p th:each="err : ${#fields.globalErrors()}" th:text="${err}">...</p>
</div>

7.4 Displaying errors outside forms

Form validation errors can also be displayed outside forms by using variable (${...}) instead of selection (*{...})

expressions and prefixing the name of the form-backing bean:

Page 24 of 34

<div th:errors="${myForm}">...</div>
<div th:errors="${myForm.date}">...</div>
<div th:errors="${myForm.*}">...</div>

<div th:if="${#fields.hasErrors('${myForm}')}">...</div>
<div th:if="${#fields.hasErrors('${myForm.date}')}">...</div>
<div th:if="${#fields.hasErrors('${myForm.*}')}">...</div>

<form th:object="${myForm}">
 ...
</form>

7.5 Rich error objects

Thymeleaf offers the possibility to obtain form error information in the form of beans (instead of mere strings), with

the fieldName (String), message (String) and global (boolean) attributes.

These errors can be obtained by means of the #fields.detailedErrors() utility method:

 <li th:each="e : ${#fields.detailedErrors()}" th:class="${e.global}? globalerr : fielderr">
 The field name |
 The error message

Page 25 of 34

8 It’s still a Prototype!

Our application is ready now. But let’s have a second look at the .html page we created…

One of the nicest consequences of working with Thymeleaf is that after all this functionality we have added to our

HTML, we can still use it as a prototype (we say it is a Natural Template). Let’s open seedstartermng.html directly in our

browser without executing our application:

STSM natural templating

There it is! It’s not a working application, it’s not real data… but it is a perfectly valid prototype made up of perfectly

displayable HTML code.

Page 26 of 34

9 The Conversion Service

9.1 Configuration

As explained before, Thymeleaf can make use of a Conversion Service registered at the Application Context. Our

application configuration class, by extending Spring’s own WebMvcConfigurerAdapter helper, will automatically register

such conversion service, which we can configure by adding the formatters that we need. Let’s see again what it looks

like:

@Override
public void addFormatters(final FormatterRegistry registry) {
 super.addFormatters(registry);
 registry.addFormatter(varietyFormatter());
 registry.addFormatter(dateFormatter());

}

@Bean
public VarietyFormatter varietyFormatter() {

 return new VarietyFormatter();
}

@Bean

public DateFormatter dateFormatter() {
 return new DateFormatter();
}

9.1 Double-brace syntax

The Conversion Service can be easily applied in order to convert/format any object into String. This is done by means of

the double-brace expression syntax:

For variable expressions: ${{...}}

For selection expressions: *{{...}}

So, for example, given an Integer-to-String converter that adds commas as a thousands separator, this:

<p th:text="${val}">...</p>
<p th:text="${{val}}">...</p>

…should result in:

<p>1234567890</p>
<p>1,234,567,890</p>

9.2 Use in forms

We saw before that every th:field attribute will always apply the conversion service, so this:

<input type="text" th:field="*{datePlanted}" />

Page 27 of 34

…is actually equivalent to:

<input type="text" th:field="*{{datePlanted}}" />

Note that, per requirement of Spring, this is the only scenario in which the Conversion Service is applied in expressions

using single-brace syntax.

9.3 #conversions utility object

The #conversions expression utility object allows the manual execution of the Conversion Service wherever needed:

<p th:text="${'Val: ' + #conversions.convert(val,'String')}">...</p>

Syntax for this utility object:

#conversions.convert(Object,Class) : converts the object to the specified class.

#conversions.convert(Object,String) : same as above, but specifying the target class as a String (note the

java.lang. package can be ommitted).

Page 28 of 34

10 Rendering Template Fragments

Thymeleaf offers the possibility to render only part of a template as the result of its execution: a fragment.

This can be a useful componentization tool. For example, it can be used at controllers that execute on AJAX calls, which

might return markup fragments of a page that is already loaded at the browser (for updating a select,

enabling/disabling buttons…).

Fragmentary rendering can be achieved by using Thymeleaf’s fragment specs: objects implementing the

org.thymeleaf.fragment.IFragmentSpec interface.

The most common of these implementations is org.thymeleaf.standard.fragment.StandardDOMSelectorFragmentSpec ,

which allows specifying a fragment using a DOM Selector exactly like the ones used at th:include or th:replace .

10.1 Specifying fragments in view beans

View beans are beans of the org.thymeleaf.spring4.view.ThymeleafView class declared at the application context

(@Bean declarations if you are using Java configuration). They allow the specification of fragments like this:

@Bean(name="content-part")
@Scope("prototype")

public ThymeleafView someViewBean() {
 ThymeleafView view = new ThymeleafView("index"); // templateName = 'index'
 view.setMarkupSelector("content");
 return view;

}

Given the above bean definition, if our controller returns content-part (the name of the above bean)…

@RequestMapping("/showContentPart")
public String showContentPart() {

 ...
 return "content-part";
}

…thymeleaf will return only the content fragment of the index template – which location will probably be something

like /WEB-INF/templates/index.html , once prefix and suffix are applied. So the result will be completely equivalent to

specifying index :: content :

<!DOCTYPE html>

<html>
 ...
 <body>
 ...
 <div th:fragment="content">

 Only this div will be rendered!
 </div>
 ...
 </body>

</html>

Note also that, thanks to the power of Thymeleaf Markup Selectors, we could select a fragment in a template without

needing any th:fragment attributes at all. Let’s use the id attribute, for example:

Page 29 of 34

@Bean(name="content-part")
@Scope("prototype")
public ThymeleafView someViewBean() {

 ThymeleafView view = new ThymeleafView("index"); // templateName = 'index'
 view.setMarkupSelector("#content");
 return view;
}

…which will perfectly select:

<!DOCTYPE html>
<html>
 ...

 <body>
 ...
 <div id="content">
 Only this div will be rendered!
 </div>

 ...
 </body>
</html>

10.2 Specifying fragments in controller return values

Instead of declaring view beans, fragments can be specified from the controllers themselves by using the syntax of

fragment expressions. Just like in th:insert or th:replace attributes:

@RequestMapping("/showContentPart")

public String showContentPart() {
 ...
 return "index :: content";
}

Of course, again the full power of DOM Selectors is available, so we could select our fragment based on standard HTML

attributes, like id="content" :

@RequestMapping("/showContentPart")
public String showContentPart() {
 ...

 return "index :: #content";
}

And we can also use parameters, like:

@RequestMapping("/showContentPart")

public String showContentPart() {
 ...
 return "index :: #content ('myvalue')";
}

Page 30 of 34

11 Advanced Integration Features

11.1 Integration with RequestDataValueProcessor

Thymeleaf seamlessly integrates with Spring’s RequestDataValueProcessor interface. This interface allows the

interception of link URLs, form URLs and form field values before they are written to the markup result, as well as

transparently adding hidden form fields that enable security features like e.g. protection agains CSRF (Cross-Site

Request Forgery).

An implementation of RequestDataValueProcessor can be easily configured at the Application Context. It needs to

implement the org.springframework.web.servlet.support.RequestDataValueProcessor interface and have

requestDataValueProcessor as a bean name:

@Bean
public RequestDataValueProcessor requestDataValueProcessor() {
 return new MyRequestDataValueProcessor();
}

…and Thymeleaf will use it this way:

th:href and th:src call RequestDataValueProcessor.processUrl(...) before rendering the URL.

th:action calls RequestDataValueProcessor.processAction(...) before rendering the form’s action attribute, and

additionally it detects when this attribute is being applied on a <form> tag —which should be the only place, anyway

—, and in such case calls RequestDataValueProcessor.getExtraHiddenFields(...) and adds the returned hidden fields

just before the closing </form> tag.

th:value calls RequestDataValueProcessor.processFormFieldValue(...) for rendering the value it refers to, unless

there is a th:field present in the same tag (in which case th:field will take care).

th:field calls RequestDataValueProcessor.processFormFieldValue(...) for rendering the value of the field it

applies to (or the tag body if it is a <textarea>).

Note there are very few scenarios in which you would need to explicitly implement RequestDataValueProcessor

in your application. In most cases, this will be used automatically by security libraries you transparently use, like

e.g. Spring Security’s CSRF support.

11.1 Building URIs to controllers

Since version 4.1, Spring allows the possibility to build links to annotated controllers directly from views, without the

need to know the URIs these controllers are mapped to.

In Thymeleaf, this can be achieved by means of the #mvc.url(...) expression object method, which allows the

specification of controller methods by the capital letters of the controller class they are in, followed by the name of the

method itself. This is equivalent to JSP’s spring:mvcUrl(...) custom function.

For example, for:

Page 31 of 34

public class ExampleController {

 @RequestMapping("/data")
 public String getData(Model model) { ... return "template" }

 @RequestMapping("/data")

 public String getDataParam(@RequestParam String type) { ... return "template" }

}

The following code will create a link to it:

<a th:href="${(#mvc.url('EC#getData')).build()}">Get Data Param
<a th:href="${(#mvc.url('EC#getDataParam').arg(0,'internal')).build()}">Get Data Param

You can read more about this mechanism at http://docs.spring.io/spring-framework/docs/4.1.2.RELEASE/spring-

framework-reference/html/mvc.html#mvc-links-to-controllers-from-views

Page 32 of 34

12 Spring WebFlow integration

12.1 Basic configuration

The Thymeleaf + Spring integration packages include integration with Spring WebFlow (2.3+).

WebFlow includes some AJAX capabilities for rendering fragments of the displayed page when specific events

(transitions) are triggered, and in order to enable Thymeleaf to attend these AJAX requests, we will have to use a

different ViewResolver implementation, configured like this:

<bean id="thymeleafViewResolver" class="org.thymeleaf.spring4.view.AjaxThymeleafViewResolver">
 <property name="viewClass" value="org.thymeleaf.spring4.view.FlowAjaxThymeleafView" />
 <property name="templateEngine" ref="templateEngine" />

</bean>

…and then this ViewResolver can be configured at your WebFlow ViewFactoryCreator like:

<bean id="mvcViewFactoryCreator"
 class="org.springframework.webflow.mvc.builder.MvcViewFactoryCreator">

 <property name="viewResolvers" ref="thymeleafViewResolver"/>
</bean>

From here on, you can specify Thymeleaf templates in your view-state’s:

<view-state id="detail" view="bookingDetail">

 ...
</view-state>

In the above example, bookingDetail is a Thymeleaf template specified in the usual way, understandable by any of the

Template Resolvers configured at the TemplateEngine .

12.2 AJAX fragments in Spring WebFlow

Note that what is explained here is just the way to create AJAX fragments to be used with Spring WebFlow. If

you are not using WebFlow, creating a Spring MVC controller that responds to an AJAX request and returns a

chunk of HTML is as straightforward as creating any other template-returning controller, with the only

exception that you would probably be returning a fragment like "main :: admin" from your controller method.

WebFlow allows the specification of fragments to be rendered via AJAX with <render> tags, like this:

<view-state id="detail" view="bookingDetail">
 <transition on="updateData">
 <render fragments="hoteldata"/>

 </transition>
</view-state>

These fragments (hoteldata , in this case) can be a comma-separated list of fragments specified at the markup with

th:fragment :

Page 33 of 34

<div id="data" th:fragment="hoteldata">

 This is a content to be changed
</div>

Always remember that the specified fragments must have an id attribute, so that the Spring JavaScript libraries running

on the browser are capable of substituting the markup.

<render> tags can also be specified using DOM selectors:

<view-state id="detail" view="bookingDetail">
 <transition on="updateData">
 <render fragments="[//div[@id='data']]"/>

 </transition>
</view-state>

…and this will mean no th:fragment is needed:

<div id="data">

 This is a content to be changed
</div>

As for the code that triggers the updateData transition, it looks like:

<script type="text/javascript" th:src="@{/resources/dojo/dojo.js}"></script>
<script type="text/javascript" th:src="@{/resources/spring/Spring.js}"></script>

<script type="text/javascript" th:src="@{/resources/spring/Spring-Dojo.js}"></script>

 ...

<form id="triggerform" method="post" action="">
 <input type="submit" id="doUpdate" name="_eventId_updateData" value="Update now!" />
</form>

<script type="text/javascript">
 Spring.addDecoration(
 new Spring.AjaxEventDecoration({formId:'triggerform',elementId:'doUpdate',event:'onclick'}));
</script>

Page 34 of 34

	Thymeleaf
	Tutorial: Thymeleaf + Spring
	Preface
	1 Integrating Thymeleaf with Spring
	2 The SpringStandard Dialect
	3 Views and View Resolvers
	3.1 Views and View Resolvers in Spring MVC
	3.2 Views and View Resolvers in Thymeleaf

	4 Spring Thyme Seed Starter Manager
	4.1 The Concept
	4.2 Business Layer
	4.3 Spring MVC configuration
	4.4 The Controller
	Model Attributes
	Mapped methods

	4.5 Configuring a Conversion Service

	5 Listing Seed Starter Data
	6 Creating a Form
	6.1 Handling the command object
	6.2 Inputs
	6.3 Checkbox fields
	6.4 Radio Button fields
	6.5 Dropdown/List selectors
	6.6 Dynamic fields

	7 Validation and Error Messages
	7.1 Field errors
	Simplifying error-based CSS styling: th:errorclass

	7.2 All errors
	7.3 Global errors
	7.4 Displaying errors outside forms
	7.5 Rich error objects

	8 It’s still a Prototype!
	9 The Conversion Service
	9.1 Configuration
	9.1 Double-brace syntax
	9.2 Use in forms
	9.3 #conversions utility object

	10 Rendering Template Fragments
	10.1 Specifying fragments in view beans
	10.2 Specifying fragments in controller return values

	11 Advanced Integration Features
	11.1 Integration with RequestDataValueProcessor
	11.1 Building URIs to controllers

	12 Spring WebFlow integration
	12.1 Basic configuration
	12.2 AJAX fragments in Spring WebFlow

